Acta Photonica Sinica, Volume. 52, Issue 6, 0604002(2023)

Characteristics of Ternary Organic Photodetectors Based on P3HT∶PC61BM∶ITIC Dual Acceptors

Ruliang ZHANG, Mingchao PI, Tao AN*, Gang LU, and Qian WANG
Author Affiliations
  • College of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
  • show less
    References(25)

    [1] KIM Y Y, YANG T Y, SUHONEN R et al. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window[J]. Nature Communications, 11, 1-11(2020).

    [2] HUANG C F, CHIANG R T, CHENG Y T. A combined spin coating and lift-off process (CSLOP) to realize thick silver microstructures with a high aspect ratio for IoT applications[C], 1122-1125(2021).

    [3] XIA Y, AGUIRRE L E, XU X et al. All-polymer high-performance photodetector through lamination[J]. Advanced Electronic Materials, 6, 1901017(2020).

    [4] CAO G, WANG F, PENG M et al. Multicolor broadband and fast photodetector based on InGaAs-insulator-graphene hybrid heterostructure[J]. Advanced Electronic Materials, 6, 1901007(2020).

    [5] ZHONG Zhiming, LI Kang, ZHANG Jiaxin et al. High-performance all-polymer photodetectors via thick photoactive layer strategy[J]. ACS Applied Materials & Interfaces, 11, 14208-14214(2019).

    [6] KIM S Y, CHO S J, BYEON S E et al. Self-assembled monolayers as interface engineering nanomaterials in perovskite solar cells[J]. Advanced Energy Materials, 10, 2002606(2020).

    [7] SHI Linlin, SONG Jingcheng, ZHANG Ye et al. High performance flexible organic photo-multiplication photodetector based on ultra-thin silver film transparent electrode[J]. Nanotechnology, 31, 214001(2020).

    [8] YAN Tingting, SONG Wei, HUANG Jiaming et al. 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy[J]. Advanced Materials, 31, 1902210(2019).

    [9] WANG Y, XU W, YI J et al. Improving the exciton dissociation of polymer/fullerene interfaces with a minimal loading amount of energy cascading molecular dopant[J]. Journal of Materials Chemistry A, 6, 15977-15984(2018).

    [10] WANG Jian, ZHAO Zijin, YANG Kaixuan et al. A critical review on photomultiplication type organic photodetectors[J]. Acta Polymerica Sinica, 53, 331-353(2022).

    [11] WANG Hanyu, ZHENG Yifan, QIN Ruiheng et al. Highly sensitive panchromatic ternary polymer photodetectors enabled by Förster resonance energy transfer and post solvent treatment[J]. Journal of Physics D: Applied Physics, 51, 104002(2018).

    [12] LI Wei, XU Yalun, MENG Xianyi et al. Visible to near‐infrared photodetection based on ternary organic heterojunctions[J]. Advanced Functional Materials, 29, 1808948(2019).

    [13] WENG S Y, ZHAO M, JIANG D Y. Organic ternary bulk heterojunction broadband photodetectors based on nonfullerene acceptors with a spectral response range from 200 to 1050 nm[J]. Journal of Physical Chemistry C, 125, 20676-20685(2021).

    [14] GU H, YAN L, SAXENA S et al. Revealing the interfacial photoreduction of MoO3 with P3HT from the molecular weight-dependent “Burn-in” degradation of P3HT:PC61BM solar cells[J]. ACS Applied Energy Materials, 3, 9714-9723(2020).

    [15] KADAM K D, KIM H, REHMAN S et al. Compositional dynamics of the electron transport layer (ZnO:PEIE) in P3HT:PC61BM organic solar cells[J]. Materials Science in Semiconductor Processing, 136, 106118(2021).

    [16] WADSWORTH A, HAMID Z, KOSCO J et al. The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications[J]. Advanced Materials, 32, 2001763(2020).

    [17] FORTI G, NITTI A, OSW P et al. Recent advances in non-fullerene acceptors of the IDIC/ITIC families for bulk-heterojunction organic solar cells[J]. International Journal of Molecular Sciences, 21, 8085(2020).

    [18] LI Qingyuan, GUO Yunlong, LIU Yunqi. Exploration of near-infrared organic photodetectors[J]. Chemistry of Materials, 31, 6359-6379(2019).

    [19] FAN Baobing, ZHONG Wenkai, JIANG Xiaofang et al. Improved performance of ternary polymer solar cells based on a nonfullerene electron cascade acceptor[J]. Advanced Energy Materials, 7, 1602127(2017).

    [20] ZHANG G, YANG G, YAN H et al. Efficient non-fullerene polymer solar cells enabled by a novel wide bandgap small molecular acceptor[J]. Advanced Materials, 29, 1606054(2017).

    [21] FAN Q, SU W, GUO X et al. A 1,1′-vinylene-fused indacenodithiophene-based low bandgap polymer for efficient polymer solar cells[J]. Journal of Materials Chemistry A, 5, 5106-5114(2017).

    [22] RIMINUCCI A, GRAZIOSI P, CALBUCCI M et al. Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices[J]. Applied Physics Letters, 112, 142401(2018).

    [23] XIE Y, YANG F, LI Y et al. Morphology control enables efficient ternary organic solar cells[J]. Advanced Materials, 30, 1803045(2018).

    [24] ZUO G, LIU X, FAHLMAN M et al. Morphology determines conductivity and Seebeck coefficient in conjugated polymer blends[J]. ACS Applied Materials & Interfaces, 10, 9638-9644(2018).

    [25] WANG H, ZHENG, QIN R et al. Highly sensitive panchromatic ternary polymer photodetectors enabled by Förster resonance energy transfer and post solvent treatment[J]. Journal of Physics D, 51, 104002(2018).

    Tools

    Get Citation

    Copy Citation Text

    Ruliang ZHANG, Mingchao PI, Tao AN, Gang LU, Qian WANG. Characteristics of Ternary Organic Photodetectors Based on P3HT∶PC61BM∶ITIC Dual Acceptors[J]. Acta Photonica Sinica, 2023, 52(6): 0604002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 27, 2022

    Accepted: Jan. 29, 2023

    Published Online: Jul. 27, 2023

    The Author Email: Tao AN (antao@xaut.edu.cn)

    DOI:10.3788/gzxb20235206.0604002

    Topics