Journal of Inorganic Materials, Volume. 40, Issue 5, 497(2025)
[1] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science(2011).
[2] ARMAND M, TARASCON J M. Building better batteries[J]. Nature(2008).
[3] YANG Z, ZHANG J, KINTNER-MEYER M C W et al. Electrochemical energy storage for green grid[J]. Chemical Reviews(2011).
[4] CRABTREE G. Perspective: the energy-storage revolution[J]. Nature(2015).
[5] ABAS N, KALAIR A, KHAN N. Review of fossil fuels and future energy technologies[J]. Futures(2015).
[6] ZU C X, LI H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science(2011).
[7] DE LA LLAVE E, BORGEL V, PARK K J et al. Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior[J]. ACS Applied Materials & Interfaces(2016).
[8] HU M F, HUANG L P, LI H et al. Research progress on hard carbon anode for Li/Na-ion batteries[J]. Journal of Inorganic Materials(2024).
[9] HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews(2017).
[10] GUO Y J, JIN R X, FAN M et al. Sodium layered oxide cathodes: properties, practicality and prospects[J]. Chemical Society Reviews(2024).
[11] SU H, JAFFER S, YU H. Transition metal oxides for sodium-ion batteries[J]. Energy Storage Materials(2016).
[12] LAN Y, YAO W, HE X et al. Mixed polyanionic compounds as positive electrodes for low-cost electrochemical energy storage[J]. Angewandte Chemie International Edition(2020).
[13] KOSOVA N V, SHINDROV A A. Mixed polyoxyanion cathode materials[J]. Energy Storage Materials(2021).
[14] BARPANDA P. Pursuit of sustainable iron-based sodium battery cathodes: two case studies[J]. Chemistry of Materials(2016).
[15] NI Q, BAI Y, WU F et al. Polyanion-type electrode materials for sodium-ion batteries[J]. Advanced Science(2017).
[16] FERGUS J W. Recent developments in cathode materials for lithium ion batteries[J]. Journal of Power Sources(2010).
[17] HE L, LI H, GE X et al. Iron-phosphate-based cathode materials for cost-effective sodium-ion batteries: development, challenges, and prospects[J]. Advanced Materials Interfaces(2022).
[18] LI H, XU M, LONG H et al. Stabilization of multicationic redox chemistry in polyanionic cathode by increasing entropy[J]. Advanced Science, 2202082(2022).
[19] AHSAN Z, CAI Z, WANG S et al. Recent development of phosphate based polyanion cathode materials for sodium-ion batteries[J]. Advanced Energy Materials(2024).
[20] SHI Y, JIANG P, WANG S et al. Slight compositional variation- induced structural disorder-to-order transition enables fast Na+ storage in layered transition metal oxides[J]. Nature Communications(2022).
[21] WANG J, ZENG W, ZHU J et al. Fe-rich pyrophosphate with prolonged high-voltage-plateaus and suppressed voltage decay as sodium-ion battery cathode[J]. Nano Energy(2023).
[22] ZHAO A, LIU C, JI F et al. Revealing the phase evolution in Na4Fe
[23] REN W, QIN M, ZHOU Y et al. Electrospun Na4Fe3(PO4)2(P2O7) nanofibers as free-standing cathodes for ultralong-life and high-rate sodium-ion batteries[J]. Energy Storage Materials(2023).
[24] SONG H J, KIM K H, KIM J C et al. Superior sodium storage performance of reduced graphene oxide-supported Na3.12Fe2.44(P2O7)2/C nanocomposites[J]. Chemical Communications(2017).
[25] WANG J, XU S D, LU Z H et al. Hollow-structured CoSe2/C anode materials: preparation and sodium storage properties for sodium-ion batteries[J]. Journal of Inorganic Materials(2022).
[26] YOU S, ZHANG Q, LIU J et al. Hard carbon with an opened pore structure for enhanced sodium storage performance[J]. Energy & Environmental Science(2024).
[27] LIU Y, ZHANG N, WANG F et al. Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries[J]. Advanced Functional Materials(2018).
[28] ZHANG L M, HE X D, WANG S et al. Hollow-sphere-structured Na4Fe3(PO4)2(P2O7)/C as a cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces(2021).
[29] WU X, ZHONG G, YANG Y. Sol-Gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction[J]. Journal of Power Sources(2016).
[30] KONG G Q, LENG M Z, ZHOU Z R et al. Sb doped O3 type Na0.9Ni0.5Mn0.3Ti0.2O2 cathode material for Na-ion battery[J]. Journal of Inorganic Materials(2023).
[31] YUAN T, WANG Y, ZHANG J et al. 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries[J]. Nano Energy(2019).
[32] PENG B, WAN G, AHMAD N et al. Recent progress in the emerging modification strategies for layered oxide cathodes toward practicable sodium ion batteries[J]. Advanced Energy Materials(2023).
[33] WANG C, LIU L, ZHAO S et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium- ion battery[J]. Nature Communications(2021).
[34] LI M, QIU X, YIN Y et al. O3-type Ni-Rich NaNi2/3Mn1/6Fe1/6O2: a high-performance cathode material for sodium-ion batteries[J]. Journal of Alloys and Compounds(2023).
Get Citation
Copy Citation Text
Junchi WAN, Lulu DU, Yongshang ZHANG, Lin LI, Jiande LIU, Linsen ZHANG.
Category:
Received: Nov. 20, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Lulu DU (2024007@zzuli.edu.cn), Linsen ZHANG (hnzhanglinsen@163.com)