Journal of Inorganic Materials, Volume. 40, Issue 5, 497(2025)
The development of low-cost and long-lifespan sodium-ion battery (SIB) cathode materials is crucial for large-scale energy storage. Iron-based phosphate cathode materials have attracted significant attention in recent years for their high theoretical capacity, excellent structural stability and rich resources. Here, a series of Na4FexP4O12+x/C (x=2.6-3.3) electrode materials are prepared using Sol-Gel technique and thermal treatment process. Effect of the phase structure on electrochemical performance of Na4FexP4O12+x/C electrode materials is investigated. It is found that three phases, including Na2FeP2O7 (NFPO), Na4Fe3(PO4)2P2O7 (NFPP) and NaFePO4 (NFP), mainly exist in the Na4FexP4O12+x/C system. Among Na4FexP4O12+x/C electrode materials, Na4Fe3.1P4O15.1/C electrode material with the highest content of NFPP phase possesses rapid electronic and sodium-ion conduction characteristics, thereby exhibiting the optimal electrochemical performance. As a result, the SIB equipped with Na4Fe3.1P4O15.1/C electrode material shows high reversible capacity, with a discharge specific capacity of 102.8 mAh·g-1 at a current density of 0.1C (1C=129 mAh·g-1), as well as capacity retention of 88.7% after 700 cycles. Furthermore, the as-assembled battery exhibits excellent rate performance with a discharge specific capacity of 61.5 mAh·g-1 at a current density of 5C.
Get Citation
Copy Citation Text
Junchi WAN, Lulu DU, Yongshang ZHANG, Lin LI, Jiande LIU, Linsen ZHANG.
Category:
Received: Nov. 20, 2024
Accepted: --
Published Online: Sep. 2, 2025
The Author Email: Lulu DU (2024007@zzuli.edu.cn), Linsen ZHANG (hnzhanglinsen@163.com)