Chinese Journal of Lasers, Volume. 49, Issue 8, 0802001(2022)
Room- and High-Temperature Mechanical Properties of Aluminum Alloys Fabricated Using Laser Powder Bed Fusion Additive Manufacturing
[1] Zhang H, Gu D D, Dai D H et al. Influence of heat treatment on corrosion behavior of rare earth element Sc modified Al-Mg alloy processed by selective laser melting[J]. Applied Surface Science, 509, 145330(2020).
[2] Chen Y C, Zhang S Q, Tian X J et al. Microstructure and microhardness of 4045 aluminum alloy fabricated by laser melting deposition[J]. Chinese Journal of Lasers, 42, 0303008(2015).
[3] Kang N, Coddet P, Liao H L et al. Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting[J]. Applied Surface Science, 378, 142-149(2016).
[4] Jiao S K, Liu S Y, Liu D et al. Heat treatment microstructures and TB phase precipitation of laser additive manufactured Al-Li alloys[J]. Chinese Journal of Lasers, 45, 0502001(2018).
[5] Herzog D, Seyda V, Wycisk E et al. Additive manufacturing of metals[J]. Acta Materialia, 117, 371-392(2016).
[6] Gu D D, Shi X Y, Poprawe R et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 372, eabg1487(2021).
[7] Duda T, Raghavan L V. 3D metal printing technology: the need to re-invent design practice[J]. AI & Society, 33, 241-252(2018).
[8] Qin Y L, Sun B H, Zhang H et al. Development of selective laser melted aluminum alloys and aluminum matrix composites in aerospace field[J]. Chinese Journal of Lasers, 48, 1402002(2021).
[9] Zhao Y H, Wang Z G, Zhao J B et al. Influence of substrate cooling condition on properties of laser deposited AlSi10Mg alloys[J]. Acta Optica Sinica, 40, 1114002(2020).
[10] Qian D Y, Chen C J, Zhang M et al. Study on microstructure and micro-mechanical properties of porous aluminum alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 43, 0403002(2016).
[11] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).
[12] Yao Y S, Wang J, Chen Q B et al. Research status of defects and defect treatment technology for laser additive manufactured products[J]. Laser & Optoelectronics Progress, 56, 100004(2019).
[13] Zhang H, Zhu H H, Qi T et al. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties[J]. Materials Science and Engineering A, 656, 47-54(2016).
[14] Zhang H, Gu D D, Dai D H et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al-Mg alloy produced by selective laser melting[J]. Materials Science and Engineering A, 788, 139593(2020).
[15] Simonelli M, Tse Y Y, Tuck C. Fracture mechanisms in high-cycle fatigue of selective laser melted Ti-6Al-4V[J]. Key Engineering Materials, 627, 125-128(2014).
[16] Wycisk E, Solbach A, Siddique S et al. Effects of defects in laser additive manufactured Ti-6Al-4V on fatigue properties[J]. Physics Procedia, 56, 371-378(2014).
[17] Sun W B, Ma Y E, Huang W et al. Effects of build direction on tensile and fatigue performance of selective laser melting Ti6Al4V titanium alloy[J]. International Journal of Fatigue, 130, 105260(2020).
[18] Gockel J, Sheridan L, Koerper B et al. The influence of additive manufacturing processing parameters on surface roughness and fatigue life[J]. International Journal of Fatigue, 124, 380-388(2019).
[19] Kluczyński J, śnieźek L, Grzelak K et al. Crack growth behavior of additively manufactured 316L steel-influence of build orientation and heat treatment[J]. Materials, 13, 3259(2020).
[20] Garb C, Leitner M, Grün F. Effect of elevated temperature on the fatigue strength of casted AlSi8Cu3 aluminium alloys[J]. Procedia Structural Integrity, 7, 497-504(2017).
[21] Böhm E, Łagoda T. Fatigue properties of aluminium alloys for uniaxial cyclic loads[J]. Key Engineering Materials, 598, 13-19(2014).
[22] Wang Z, Wu W W, Qian G A et al. In-situ SEM investigation on fatigue behaviors of additive manufactured Al-Si10-Mg alloy at elevated temperature[J]. Engineering Fracture Mechanics, 214, 149-163(2019).
[23] Reschetnik W, Brüggemann J P, Aydinöz M E et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy[J]. Procedia Structural Integrity, 2, 3040-3048(2016).
[24] Siddique S, Imran M, Wycisk E et al. Fatigue assessment of laser additive manufactured AlSi12 eutectic alloy in the very high cycle fatigue (VHCF) range up to 1E9 cycles[J]. Materials Today: Proceedings, 3, 2853-2860(2016).
[25] Buchbinder D, Meiners W, Wissenbach K et al. Selective laser melting of aluminum die-cast alloy: correlations between process parameters, solidification conditions, and resulting mechanical properties[J]. Journal of Laser Applications, 27, S29205(2015).
[26] Aversa A, Marchese G, Manfredi D et al. Laser powder bed fusion of a high strength Al-Si-Zn-Mg-Cu alloy[J]. Metals, 8, 300-312(2018).
[27] Li Y X, Gu D D, Zhang H et al. Effect of trace addition of ceramic on microstructure development and mechanical properties of selective laser melted AlSi10Mg alloy[J]. Chinese Journal of Mechanical Engineering, 33, 33(2020).
[28] Li C, White R, Fang X Y et al. Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment[J]. Materials Science and Engineering A, 705, 20-31(2017).
[29] Liu X H, Zhao C C, Zhou X et al. Microstructure of selective laser melted AlSi10Mg alloy[J]. Materials & Design, 168, 107677(2019).
[30] Chen B, Moon S K, Yao X et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy[J]. Scripta Materialia, 141, 45-49(2017).
[31] Lu J L, Lin X, Liao H L et al. Compression behaviour of quasicrystal/Al composite with powder mixture driven layered microstructure prepared by selective laser melting[J]. Optics & Laser Technology, 129, 106277(2020).
[32] Ponnusamy P, Masood S H, Ruan D et al. High strain rate dynamic behaviour of AlSi12 alloy processed by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 97, 1023-1035(2018).
[33] de Araujo A P M, Pauly S, Batalha R L et al. Additive manufacturing of a quasicrystal-forming Al95Fe2Cr2Ti1 alloy with remarkable high-temperature strength and ductility[J]. Additive Manufacturing, 41, 101960(2021).
[34] Wang Y, Ding J, Fan Z et al. Tension-compression asymmetry in amorphous silicon[J]. Nature Materials, 20, 1371-1377(2021).
[35] Zhao T Y[D]. Microstructure and properties of heat-resistant Al-Si-Cu-Ni-Ce-Cr alloy for piston(2019).
[36] de Menezes J T O, Castrodeza E M, Casati R. Effect of build orientation on fracture and tensile behavior of A357 Al alloy processed by selective laser melting[J]. Materials Science and Engineering A, 766, 138392(2019).
Get Citation
Copy Citation Text
Shiwen Qi, Peng Rong, Dan Huang, Yong Chen, Rui Wang, Donghua Dai, Dongdong Gu. Room- and High-Temperature Mechanical Properties of Aluminum Alloys Fabricated Using Laser Powder Bed Fusion Additive Manufacturing[J]. Chinese Journal of Lasers, 2022, 49(8): 0802001
Category: laser manufacturing
Received: Jan. 10, 2022
Accepted: Feb. 11, 2022
Published Online: Mar. 25, 2022
The Author Email: Gu Dongdong (dongdonggu@nuaa.edu.cn)