Chinese Journal of Lasers, Volume. 51, Issue 24, 2402301(2024)

Simulation of Coaxial Powder Feeding Laser Directed Energy Deposition of AlCoCrFeNi High Entropy Alloys Based on DPM‐VOF Method

Guangyi Ma*, Hongyu Wang, Shiyong Ma, Tengda Di, Fangyong Niu, and Dongjiang Wu
Author Affiliations
  • State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, Liaoning , China
  • show less
    Figures & Tables(24)
    Schematic diagram of laser directed energy deposition system
    Schematic of the VOF method for tracing the free surface of fluid
    Particle model. (a) DPM model; (b) DPM-VOF coupled model
    Energy distribution of heat sources in rotating Gaussian bodies
    Adaptive heat source modeling
    Computational domain. (a) Physical model; (b) mesh
    Single-track deposition. (a) Experimental results; (b) simulation results; (c) cross-section size comparison; (d) deposition height during stable molding; (e) deposition width during stable molding
    Temperature field characteristics of the melt pool. (a) Temperature field at 0.1 s; (b) temperature field at 0.5 s; (c) temperature field at 1.5 s; (d) temperature field at 3.0 s; (e) melt pool volume versus time; (f) max temperature of melt pool versus time
    Flow characteristics of the melt pool moments. (a) 0.1 s; (b) 0.5 s; (c) 1.5 s; (d) 3.0 s
    Flow field distribution in the longitudinal section of the melt pool moments. (a) 3.00018 s; (b) 3.00019 s; (c) 3.00020 s; (d) 3.00021 s; (e) 3.00022 s; (f) 3.00023 s; (g) 3.00038 s; (h) 3.00039 s
    Cross-sectional flow field distributions at different locations of the melt pool. (a1)‒(a4) Back edge of the melt pool;
    Temperature distributions of the deposition layer moments. (a) 7.5 s; (b) 12.5 s; (c) 17.5 s; (d) 20.0 s
    Melt pool morphology at different moments. (a) 2.5 s; (b) 7.5 s; (c) 12.5 s; (d) 17.5 s
    Temperature gradient along the solid-liquid interface behind the melt pool at different moments. (a) 2.5 s; (b) 7.5 s; (c) 12.5 s; (d) 17.5 s
    Melt pool movement process in different sedimentary layers
    Solidification rates along the solid‒liquid interface behind the melt pool at different moments. (a) 2.5 s; (b) 7.5 s; (c) 12.5 s; (d) 17.5 s
    Microstructures of thin-walled specimen. (a) Bottom; (b) middle; (c) top
    • Table 1. Chemical composition of AlCoCrFeNi HEA powder

      View table

      Table 1. Chemical composition of AlCoCrFeNi HEA powder

      ElementMass fraction /%
      Al10.35
      Co23.11
      Cr20.26
      Fe22.49
      NiBal.
      O0.0071
      N0.0094
    • Table 2. Quantity fraction in diameter range of AlCoCrFeNi HEA powder

      View table

      Table 2. Quantity fraction in diameter range of AlCoCrFeNi HEA powder

      Diameter range /μmQuantity fraction /%
      ≤457.2
      >45‒6027.0
      >60‒7543.0
      >75‒9014.6
      >908.2
    • Table 3. Sample molding process parameters

      View table

      Table 3. Sample molding process parameters

      SampleScanning path

      Laser

      power/W

      Scanning velocity /

      (mm/min)

      Powder feeding

      rate /(g/min)

      Number of

      deposition layers

      Interlayer lifting

      height /mm

      Single-track6001202.581
      Thin-walledReciprocating scanning6001202.5840.8
    • Table 4. Specific parameters in DPM model

      View table

      Table 4. Specific parameters in DPM model

      ParameterValue
      Powder diameter dp /μm45‒90
      Initial velocity of powder vPs /(m/s)0.8
      Initial temperature of powder TPs /K1600
      Powder utilization rate np0.53‒0.71
    • Table 5. Numerical model parameters

      View table

      Table 5. Numerical model parameters

      ParameterValue
      Laser beam radius at work plane r0 /m0.001
      Laser focusing radius rf /m0.0005
      Defocuse distance of work plane f /m0.0167
      Depth of the laser heat source H0 /m0.001
      Laser energy absorptivity nq0.3
      Ambient temperature T0 /K300
    • Table 6. Thermal-physical parameters of AlCoCrFeNi HEA

      View table

      Table 6. Thermal-physical parameters of AlCoCrFeNi HEA

      ParameterValue
      Density ρ /(kg/m37070
      Thermal expansion coefficient β /K-12.3×10-5
      Dynamic viscosity μ /[kg/(m·s)]6.72×10-3
      Solidus temperature TS /K1413
      Liquidus temperature TL /K1523
      Specific heat c /[J/(kg·K)]739
      Latent heat of fusion L /(kJ/kg)230
      Thermal conductivity k /[W/(m·K)]29.3
      Convective heat transfer coefficient hc /[W/(m2·K)]25
      Surface tension coefficient σ /(N/m)1.79
      Temperature coefficient of surface tension dσ/dT /[N/(m·K)]-2.5×10-4
    • Table 7. G/R values along the solid‒liquid interface behind the melt pool at different moments

      View table

      Table 7. G/R values along the solid‒liquid interface behind the melt pool at different moments

      TimeAverage G/R value
      2.5 s (1st layer)5.16×109
      7.5 s (2nd layer)1.89×109
      12.5 s (3rd layer)1.27×109
      17.5 s (4th layer)1.06×109
    Tools

    Get Citation

    Copy Citation Text

    Guangyi Ma, Hongyu Wang, Shiyong Ma, Tengda Di, Fangyong Niu, Dongjiang Wu. Simulation of Coaxial Powder Feeding Laser Directed Energy Deposition of AlCoCrFeNi High Entropy Alloys Based on DPM‐VOF Method[J]. Chinese Journal of Lasers, 2024, 51(24): 2402301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Apr. 24, 2024

    Accepted: Jun. 17, 2024

    Published Online: Dec. 11, 2024

    The Author Email: Ma Guangyi (gyma@dlut.edu.cn)

    DOI:10.3788/CJL240809

    CSTR:32183.14.CJL240809

    Topics