Optics and Precision Engineering, Volume. 31, Issue 13, 1962(2023)

MMShip: medium resolution multispectral satellite imagery ship dataset

Li CHEN1,2,3, Linhan LI1,2,3, Shiyong WANG1,3、*, Sili GAO1,3、*, and Xiangzhou YE1,2,3
Author Affiliations
  • 1Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • 3Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences,Shanghai20008, China
  • show less
    References(29)

    [1] [1] 1徐芳, 刘晶红, 孙辉, 等. 光学遥感图像海面船舶目标检测技术进展[J]. 光学 精密工程, 2021, 29(4): 916-931. doi: 10.37188/OPE.2020.0419XUF, LIUJ H, SUNH, et al. Research progress on vessel detection using optical remote sensing image[J]. Opt. Precision Eng., 2021, 29(4): 916-931. (in Chinese). doi: 10.37188/OPE.2020.0419

    [2] WANG Z Q, ZHOU Y, WANG F T et al. SDGH-net: ship detection in optical remote sensing images based on Gaussian heatmap regression[J]. Remote Sensing, 13, 499(2021).

    [3] QIN H N, LI Y S, LEI J et al. A specially optimized one-stage network for object detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 18, 401-405(2021).

    [4] JIN L, LIU G D. An approach on image processing of deep learning based on improved SSD[J]. Symmetry, 13, 495(2021).

    [5] LI H, DENG L B, YANG C et al. Enhanced YOLO v3 tiny network for real-time ship detection from visual image[J]. IEEE Access, 9, 16692-16706(2021).

    [6] XIE X Y, LI B, WEI X X. Ship detection in multispectral satellite images under complex environment[J]. Remote Sensing, 12, 792(2020).

    [7] LIN T Y, MAIRE M, BELONGIE S et al. Microsoft COCO Common Objects in Context[M]. Computer Vision-ECCV 2014, 740-755(2014).

    [8] EVERINGHAM M, ESLAMI S M, GOOL L et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 111, 98-136(2015).

    [9] XIA G S, BAI X, DING J et al. DOTA: a large-scale dataset for object detection in aerial images[C], 3974-3983(2018).

    [10] CHENG G, HAN J W, ZHOU P C et al. Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection[J]. IEEE Transactions on Image Processing, 28, 265-278(2019).

    [11] LI K, WAN G, CHENG G et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296-307(2020).

    [12] LIU Z K, YUAN L, WENG L B et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C], 24, 324-331(2017).

    [14] RAINEY K, STASTNY J. Object recognition in ocean imagery using feature selection and compressive sensing[C], 1-6(2012).

    [15] ZHANG Z N, ZHANG L, WANG Y et al. ShipRSImageNet: a large-scale fine-grained dataset for ship detection in high-resolution optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8458-8472(2021).

    [16] ZOU Z X, SHI Z W. Random access memories: a new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 27, 1100-1111(2018).

    [17] CHENG G, HAN J W, LU X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 105, 1865-1883(2017).

    [18] CHENG G, XIE X X, HAN J W et al. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3735-3756(2020).

    [21] GALLEGO A J, PERTUSA A, GIL P. Automatic ship classification from optical aerial images with convolutional neural networks[J]. Remote Sensing, 10, 511(2018).

    [22] [22] 22姚力波, 张筱晗, 吕亚飞, 等. FGSC-23: 面向深度学习精细识别的高分辨率光学遥感图像舰船目标数据集[J]. 中国图象图形学报, 2021, 26(10): 2337-2345.YAOL B, ZHANGX H, LYUY F, et al. FGSC-23: a large-scale dataset of high-resolution optical remote sensing image for deep learning-based fine-grained ship recognition[J]. Journal of Image and Graphics, 2021, 26(10): 2337-2345. (in Chinese)

    [23] LIU W, ANGUELOV D, ERHAN D et al. SSD Single Shot MultiBox Detector[M]. Computer Vision-ECCV 2016, 21-37(2016).

    [24] LIN T Y, GOYAL P, GIRSHICK R et al. Focal loss for dense object detection[C], 2999-3007(2017).

    [25] KONG T, SUN F C, LIU H P et al. FoveaBox: beyound anchor-based object detection[J]. IEEE Transactions on Image Processing, 29, 7389-7398(2020).

    [26] TIAN Z, SHEN C H, CHEN H et al. FCOS: fully convolutional one-stage object detection[C], 9626-9635.

    [27] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [28] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C], 6154-6162(2018).

    Tools

    Get Citation

    Copy Citation Text

    Li CHEN, Linhan LI, Shiyong WANG, Sili GAO, Xiangzhou YE. MMShip: medium resolution multispectral satellite imagery ship dataset[J]. Optics and Precision Engineering, 2023, 31(13): 1962

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Sep. 6, 2022

    Accepted: --

    Published Online: Jul. 26, 2023

    The Author Email: Shiyong WANG (s_y_w@sina.com), Sili GAO (s_y_w@sina.com)

    DOI:10.37188/OPE.20233113.1962

    Topics