Laser & Infrared, Volume. 55, Issue 1, 67(2025)
Femtosecond laser-induced structural evolution of surface anti-reflective structures in titanium alloys
[4] [4] Bharatish A, Soundarapandian S. Influence of femtosecond laser parameters and environment on surface texture characteristics of metals and non-metals-state of the art[J]. Lasers in Manufacturing and Materials Processing, 2018, 5: 143-167.
[6] [6] Wang Y, Zhao W, Wu Y, et al. Micro/nano-structures transition and electrochemical response of Ti-6Al-4V alloy in simulated seawater[J]. Surface Topography: Metrology and Properties, 2018, 6(3): 034009.
[8] [8] Vorobyev A Y, Guo C. Metallic light absorbers produced by femtosecond laser pulses[J]. Advances in Mechanical Engineering, 2010, 2: 452749.
[9] [9] Vorobyev A Y, Guo C. Enhanced absorptance of gold following multipulse femtosecond laser ablation[J]. Physical Review B, 2005, 72(19): 195422.
[10] [10] Vorobyev A Y, Guo C. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 2015, 117(3): 137-171.
[11] [11] Huang H, Yang L M, Bai S, et al. Blackening of metals using femtosecond fiber laser[J]. Applied Optics, 2015, 54(2): 324-333.
[12] [12] Fan P, Bai B, Zhong M, et al. General strategy toward dual-scale-controlled metallic micro-nano hybrid structures with ultralow reflectance[J]. ACS Nano, 2017, 11(7): 7401-7408.
[13] [13] Fan P, Bai B, Long J, et al. Broadband High-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Letters, 2015, 15(9): 5988-5994.
[14] [14] Lou R, Zhang G, Li G, et al. Design and fabrication of dual-scale broadband antireflective structures on metal surfaces by using nanosecond and femtosecond lasers[J]. Micromachines, 2019, 11(1): 20.
[15] [15] Wang Y, Ma K, Zhang T, et al. Iodine-induced self-assembly structure transition of organic molecules on the Ag (111) surface[J]. The Journal of Physical Chemistry C, 2023, 127(3): 1381-1387.
[17] [17] Xiao L, Liu L, Zhou Y, et al. Resistance-spot-welded AZ31 magnesium alloys: part I. dependence of fusion zone microstructures on second-phase particles[J]. Metallurgical and Materials Transactions A, 2010, 41: 1511-1522.
[20] [20] Huang Y, Liu S, Li W, et al. Two-dimensional periodic structure induced by single-beam femtosecond laser pulses irradiating titanium[J]. Optics Express, 2009, 17(23): 20756-20761.
[21] [21] Li J, Xu J, Lian Z, et al. Fabrication of antireflection surfaces with superhydrophobic property for titanium alloy by nanosecond laser irradiation[J]. Optics & Laser Technology, 2020, 126: 106129.
[22] [22] Mur J, Petelin J, Osterman N. High precision laser direct microstructuring system based on bursts of picosecond pulses[J]. Journal of Physics D: Applied Physics, 2017, 50(32): 325104.
Get Citation
Copy Citation Text
WANG Hui, LI Ben, CAO Ze-hao, HE Zong-tai. Femtosecond laser-induced structural evolution of surface anti-reflective structures in titanium alloys[J]. Laser & Infrared, 2025, 55(1): 67
Category:
Received: Jun. 3, 2024
Accepted: Mar. 13, 2025
Published Online: Mar. 13, 2025
The Author Email: HE Zong-tai (201910115@hbut.edu.cn)