Optics and Precision Engineering, Volume. 31, Issue 15, 2273(2023)

Image super-resolution reconstruction based on attention and wide-activated dense residual network

Qiqi KOU1、*, Chao LI2, Deqiang CHENG2, Liangliang CHEN2, Haohui MA2, and Jianying ZHANG2
Author Affiliations
  • 1School of Computer Science and Technology, China University of Mining and Technology, Xuzhou226, China
  • 2School of Information and Control Engineering, China University of Mining and Technology, Xuzhou1116, China
  • show less
    References(30)

    [1] [1] 1耿铭昆, 吴凡路, 王栋. 轻量化火星遥感影像超分辨率重建网络[J]. 光学 精密工程, 2022, 30(12):1487-1498. doi: 10.37188/OPE.20223012.1487GENGM K, WUF L, WANGD. Lightweight Mars remote sensing image super-resolution reconstruction network[J]. Opt. Precision Eng., 2022, 30(12):1487-1498.(in Chinese). doi: 10.37188/OPE.20223012.1487

    [2] [2] 2李勇, 王珂, 张立保, 等. 多断层融合的肺CT肿瘤靶区超分辨率重建[J]. 光学 精密工程, 2010, 18(5):1212-1218. doi: 10.3788/OPE.20101805.1212LIY, WANGK, ZHANGL B, et al. Super-resolution reconstruction of pulmonary nodules based on CT multi-section fusion[J]. Opt. Precision Eng., 2010, 18(5):1212-1218.(in Chinese). doi: 10.3788/OPE.20101805.1212

    [3] [3] 3王杰, 徐国明, 马健, 等. 轻量级注意力级联网络的偏振计算成像超分辨率重建[J]. 光学 精密工程, 2022, 30(19):2404-2419. doi: 10.37188/OPE.20223019.2404WANGJ, XUG M, MAJ, et al. Polarization computational imaging super-resolution reconstruction with lightweight attention cascading network[J]. Opt. Precision Eng., 2022, 30(19):2404-2419.(in Chinese). doi: 10.37188/OPE.20223019.2404

    [4] LI X, ORCHARD M T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing, 10, 1521-1527(2001).

    [5] LIU X M, ZHAO D B, ZHOU J T et al. Image interpolation via graph-based Bayesian label propagation[J]. IEEE Transactions on Image Processing, 23, 1084-1096(2014).

    [6] DAI S Y, HAN M, XU W et al. SoftCuts: a soft edge smoothness prior for color image super-resolution[J]. IEEE Transactions on Image Processing, 18, 969-981(2009).

    [7] DONG C, LOY C C, HE K M et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 295-307(2016).

    [8] SHI W Z, CABALLERO J, HUSZÁR F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C], 1874-1883(2016).

    [9] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C], 1646-1654(2016).

    [10] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [11] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C], 1637-1645(2016).

    [12] TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network[C], 2790-2798(2017).

    [13] KIM H et al. Enhanced deep residual networks for single image super-resolution[C], 1132-1140(2017).

    [14] HUI Z, GAO X B, YANG Y C et al. Lightweight image super-resolution with information multi-distillation network[C], 2024-2032(25).

    [15] LUO X T, XIE Y, ZHANG Y L et al. LatticeNet Towards Lightweight Image Super-resolution with Lattice Block[M]. Computer Vision - ECCV 2020, 272-289(2020).

    [16] TONG T, LI G, LIU X J et al. Image super-resolution using dense skip connections[C], 4809-4817(2017).

    [17] ZHANG Y L, TIAN Y P, KONG Y et al. Residual dense network for image super-resolution[C], 2472-2481(2018).

    [18] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C], 1646-1654(2016).

    [19] DAI T, CAI J R, ZHANG Y B et al. Second-order attention network for single image super-resolution[C], 11057-11066(2020).

    [20] WANG X L, GIRSHICK R, GUPTA A et al. Non-local neural networks[C], 7794-7803(2018).

    [22] LEDIG C, THEIS L, HUSZÁR F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 105-114(2017).

    [23] YU J, FAN Y, YANG J et al. Wide activation for efficient and accurate image super-resolution[J]. arXiv preprint arXiv, 2018(1808).

    [24] SZEGEDY C, LIU W, JIA Y Q et al. Going deeper with convolutions[C], 1-9(2015).

    [25] LI X, WANG W H, HU X L et al. Selective kernel networks[C], 510-519(2020).

    [26] WANG X T, YU K, DONG C et al. Recovering realistic texture in image super-resolution by deep spatial feature transform[C], 606-615(2018).

    [27] ZEYDE R, ELAD M, PROTTER M. On Single Image Scale-up Using Sparse-representations[M]. Curves and Surfaces, 711-730(2012).

    [28] MARTIN D, FOWLKES C et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C], 416-423(2002).

    [29] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C], 5197-5206(2015).

    [30] LAI W S, HUANG J B, AHUJA N et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C], 5835-5843(2017).

    CLP Journals

    [1] Yulan HAN, Yihong LUO, Yujie CUI, Chaofeng LAN. Super-resolution reconstruction of text image with multimodal semantic interaction[J]. Optics and Precision Engineering, 2025, 33(1): 135

    [2] Yulan HAN, Yihong LUO, Yujie CUI, Chaofeng LAN. Super-resolution reconstruction of text image with multimodal semantic interaction[J]. Optics and Precision Engineering, 2025, 33(1): 135

    Tools

    Get Citation

    Copy Citation Text

    Qiqi KOU, Chao LI, Deqiang CHENG, Liangliang CHEN, Haohui MA, Jianying ZHANG. Image super-resolution reconstruction based on attention and wide-activated dense residual network[J]. Optics and Precision Engineering, 2023, 31(15): 2273

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Nov. 1, 2022

    Accepted: --

    Published Online: Sep. 5, 2023

    The Author Email: Qiqi KOU (kouqiqi@cumt.edu.cn)

    DOI:10.37188/OPE.20233115.2273

    Topics