Laser & Optoelectronics Progress, Volume. 59, Issue 4, 0410006(2022)
Heterogeneous Noise Iris Segmentation Based on Attention Mechanism and Dense Multiscale Features
[15] Zhang W X, Zhu Z C, Zhang Y H et al. Cell image segmentation method based on residual block and attention mechanism[J]. Acta Optica Sinica, 40, 1710001(2020).
[17] Li D X, Zhang Z. Improved U-Net segmentation algorithm for the retinal blood vessel images[J]. Acta Optica Sinica, 40, 1010001(2020).
[22] Wang C Y, Sun Z N. A benchmark for iris segmentation[J]. Journal of Computer Research and Development, 57, 395-412(2020).
[23] Wang Y, Liu L B. Bilinear residual attention networks for fine-grained image classification[J]. Laser & Optoelectronics Progress, 57, 121011(2020).
[24] Zhou R Y, Shen W Z. PI-Unet: a neural network model for heterogeneous iris segmentation[J]. Computer Engineering and Application, 57, 223-229(2021).
Get Citation
Copy Citation Text
Xuanang You, Peng Zhao, Xiaodong Mu, Kun Bai, Sai Lian. Heterogeneous Noise Iris Segmentation Based on Attention Mechanism and Dense Multiscale Features[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0410006
Category: Image Processing
Received: Jan. 27, 2021
Accepted: Mar. 25, 2021
Published Online: Jan. 25, 2022
The Author Email: Xuanang You (youxuanang@163.com), Peng Zhao (zpxhh@163.com)