Journal of Synthetic Crystals, Volume. 51, Issue 1, 98(2022)

Thermal Spin Transport Properties of the Li Atom Doped C28 Monomolecular Device

WENG Zhulin
Author Affiliations
  • [in Chinese]
  • show less
    References(29)

    [1] [1] FARAJIAN A A, BELOSLUDOV R V, MIZUSEKI H, et al. Gate-induced switching and negative differential resistance in a single-molecule transistor: emergence of fixed and shifting states with molecular length[J]. The Journal of Chemical Physics, 2007, 127(2): 024901.

    [2] [2] FU H H, DU G F, WU D D, et al. Spin-orbit coupling induced robust spin-Seebeck effect and pure thermal spin currents in achiral molecule systems[J]. Physical Review B, 2019, 100(8): 085407.

    [3] [3] GU L, FU H H, WU R Q. How to control spin-Seebeck current in a metal-quantum dot-magnetic insulator junction[J]. Physical Review B, 2016, 94(11): 115433.

    [4] [4] KAUR M, SAWHNEY R S, ENGLES D. Non-equilibrium tunneling through Au-C20-Au molecular bridge using density functional theory-non-equilibrium Green function approach[J]. Journal of Materials Research, 2016, 31(14): 2025-2034.

    [5] [5] KAUR M, SAWHNEY R S, ENGLES D. Ab-initio molecular characterization of nonclassical fullerenes cluster using two probe approach[J]. Journal of Materials Research, 2017, 32(2): 414-425.

    [6] [6] TAN X Y, WU D D, LIU Q B, et al. Spin caloritronics in armchair silicene nanoribbons with sp3 and sp2-type alternating hybridizations[J]. Journal of Physics Condensed Matter, 2018, 30(35): 355303.

    [7] [7] TAN X Y, ZHANG L N, LIU L L. Bipolar magnetic semiconductor properties and spin-dependent Seebeck effects induced by nanoscale graphene domains doped into armchair boron nitride nanoribbons[J]. Chemical Physics Letters, 2020, 748: 137386.

    [8] [8] WU D D, DU G F, FU H H. Spin-dependent Seebeck effect, and spin-filtering and diode effects in magnetic boron-nitrogen nanotube heterojunctions[J]. Journal of Materials Chemistry C, 2020, 8(13): 4486-4492.

    [9] [9] WU D D, FU H H, LIU Q B, et al. Magnetic nanotubes: a new material platform to realize a robust spin-Seebeck effect and a perfect thermal spin-filtering effect[J]. Physical Review B, 2018, 98(11): 115422.

    [10] [10] WU D D, FU H H, LIU Q B, et al. How to realize the spin-Seebeck effect with a high spin figure of merit in magnetic boron-nitrogen nanoribbon and nanotube structures?[J]. Journal of Materials Chemistry C, 2018, 6(39): 10603-10610.

    [11] [11] WU D D, LIU Q B, FU H H, et al. How to realize a spin-dependent Seebeck diode effect in metallic zigzag γ-graphyne nanoribbons?[J]. Nanoscale, 2017, 9(46): 18334-18342.

    [12] [12] XU K, HUANG J, GUAN Z Y, et al. Transport spin polarization of magnetic C28 molecular junctions[J]. Chemical Physics Letters, 2012, 535: 111-115.

    [13] [13] ZHANG Z Q, YANG Y R, FU H H, et al. Design of spin-Seebeck diode with spin semiconductors[J]. Nanotechnology, 2016, 27(50): 505201.

    [14] [14] ZHENG X, LU W, ABTEW T A, et al. Negative differential resistance in C60-based electronic devices[J]. ACS Nano, 2010, 4(12): 7205-7210.

    [15] [15] FUNASAKA H, SUGIYAMA K, YAMAMOTO K, et al. Synthesis of actinide carbides encapsulated within carbon nanoparticles[J]. Journal of Applied Physics, 1995, 78(9): 5320-5324.

    [16] [16] GUO T, DIENER M D, CHAI Y, et al. Uranium stabilization of C28: a tetravalent fullerene[J]. Science, 1992, 257(5077): 1661-1664.

    [17] [17] MONTIEL F, MIRALRIO A, SANSORES L E, et al. Complexes of graphene nanoribbons with porphyrins and metal-encapsulated C28 as molecular rectifiers: a theoretical study[J]. Molecular Simulation, 2017, 43(9): 706-713.

    [18] [18] ENYASHIN A, GEMMING S, HEINE T, et al. C28 fullerites-structure, electronic properties and intercalates[J]. Physical Chemistry Chemical Physics, 2006, 8(28): 3320-3325.

    [19] [19] ZHANG F P, LU Q M, ZHANG X, et al. First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide[J]. Journal of Alloys and Compounds, 2011, 509(2): 542-545.

    [20] [20] ZHANG F P, LU Q M, ZHANG X, et al. Electrical transport properties of CaMnO3 thermoelectric compound: a theoretical study[J]. Journal of Physics and Chemistry of Solids, 2013, 74(12): 1859-1864.

    [21] [21] ZHANG F P, SUN Y, WANG H H, et al. Regulated microarchitecture, spin polarization state, and observed charge transfers for cerium boride CeB6 under electrical Field[J]. Materials Today Communications, 2021, 26: 101877.

    [23] [23] PAHUJA A, SRIVASTAVA S. Electronic transport properties of doped C28 fullerene[J]. Physics Research International, 2014, 2014: 1-7.

    [24] [24] LI Q, YANG Y, REN D, et al. Thermal spin transport properties of magnetic C28 monomolecular devices[J]. Journal of optoelectronic and advanced materials, 2021, 23(5-6): 299-304.

    [25] [25] GUO T, SMALLEY R E, SCUSERIA G E. Ab initio theoretical predictions of C28, C28H4, C28F4, (Ti@C28)H4, and M@C28 (M=Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn)[J]. The Journal of Chemical Physics, 1993, 99(1): 352-359.

    [26] [26] QUANTUMATK. version P-2019.03[M]. https://www.synopsys.com/silicon/quantumatk.html

    [27] [27] SMIDSTRUP S, MARKUSSEN T, VANCRAEYVELD P, et al. QuantumATK: an integrated platform of electronic and atomic-scale modelling tools[J]. Journal of Physics: Condensed Matter, 2020, 32(1): 015901.

    [30] [30] MEYER J, BREDOW T, TEGENKAMP C, et al. Thiol and thiolate bond formation of ferrocene-1, 1-dithiol to a Ag(111) surface[J]. The Journal of Chemical Physics, 2006, 125(19): 194705.

    [31] [31] STOKBRO K, TAYLOR J, BRANDBYGE M, et al. Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au(111) surfaces via thiol and thiolate bonds[J]. Computational Materials Science, 2003, 27(1/2): 151-160.

    [32] [32] IMRY Y, LANDAUER R. Conductance viewed as transmission[J]. Reviews of Modern Physics, 1999, 71(2): S306-S312.

    Tools

    Get Citation

    Copy Citation Text

    WENG Zhulin. Thermal Spin Transport Properties of the Li Atom Doped C28 Monomolecular Device[J]. Journal of Synthetic Crystals, 2022, 51(1): 98

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 29, 2021

    Accepted: --

    Published Online: Mar. 2, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics