APPLIED LASER, Volume. 44, Issue 1, 126(2024)
Narrow Linewidth Photonic Microwave Signal Generation Based on a Quantum Dot Laser
[1] [1] QI X Q, LIU J M. Photonic microwave applications of the dynamics of semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1198-1211.
[2] [2] CHAN S C, LIU J M. Microwave frequency division and multiplication using an optically injected semiconductor laser[J]. IEEE Journal of Quantum Electronics, 2005, 41(9): 1142-1147.
[3] [3] FICE M J, ROUVALIS E, VAN DIJK F, et al. 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system[J]. Optics Express, 2012, 20(2): 1769.
[4] [4] MINASIAN R A, CHAN E H W, YI X. Microwave photonic signal processing[J]. Optics Express, 2013, 21(19): 22918.
[5] [5] YAO J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.
[8] [8] CHAN S C, HWANG S K, LIU J M. Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser[J]. Optics Express, 2007, 15(22): 14921-14935.
[9] [9] CARPINTERO G, BALAKIER K, YANG Z, et al. Microwave photonic integrated circuits for millimeter-wave wireless communications[J]. Journal of Lightwave Technology, 2014, 32(20): 3495-3501.
[10] [10] JI S K, HONG Y H, SPENCER P S, et al. Broad tunable photonic microwave generation based on period-one dynamics of optical injection vertical-cavity surface-emitting lasers[J]. Optics Express, 2017, 25(17): 19863.
[11] [11] CAPMANY J, NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319-330.
[12] [12] CHANG D, ZHONG Z Q, VALLE A, et al. Microwave photonic signal generation in an optically injected discrete mode semiconductor laser[J]. Photonics, 2022, 9(3): 171.
[13] [13] ZHOU P, CHEN H, LI N Q, et al. Photonic generation of tunable dual-chirp microwave waveforms using a dual-beam optically injected semiconductor laser[J]. Optics Letters, 2020, 45(6): 1342-1345.
[14] [14] ZHANG R H, ZHOU P, LI K X, et al. Photonic generation of high-performance microwave frequency combs using an optically injected semiconductor laser with dual-loop optoelectronic feedback[J]. Optics Letters, 2021, 46(18): 4622-4625.
[15] [15] ZHUANG J P, CHAN S C. Phase noise characteristics of microwave signals generated by semiconductor laser dynamics[J]. Optics Express, 2015, 23(3): 2777.
[16] [16] SIMPSON T B, LIU J M, ALMULLA M, et al. Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1500807.
[17] [17] ZHUANG J P, CHAN S C. Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization[J]. Optics Letters, 2013, 38(3): 344-346.
[18] [18] XUE C P, JI S K, HONG Y H, et al. Numerical investigation of photonic microwave generation in an optically injected semiconductor laser subject to filtered optical feedback[J]. Optics Express, 2019, 27(4): 5065.
[19] [19] JI S K, XUE C P, VALLE A, et al. Stabilization of photonic microwave generation in vertical-cavity surface-emitting lasers with optical injection and feedback[J]. Journal of Lightwave Technology, 2018, 36(19): 4347-4353.
[20] [20] LIN X D, WU Z M, DENG T, et al. Generation of widely tunable narrow-linewidth photonic microwave signals based on an optoelectronic oscillator using an optically injected semiconductor laser as the active tunable microwave photonic filter[J]. IEEE Photonics Journal, 2018, 10(6): 1-9.
[21] [21] LIU A Y, KOMLJENOVIC T, DAVENPORT M L, et al. Reflection sensitivity of 13 μm quantum dot lasers epitaxially grown on silicon[J]. Optics Express, 2017, 25(9): 9535.
[22] [22] BUFFOLO M, ROVERE L, DE SANTI C, et al. Degradation of 1.3 μm InAs quantum-dot laser diodes: Impact of dislocation density and number of quantum dot layers[J]. IEEE Journal of Quantum Electronics, 2021, 57(1): 1-8.
[23] [23] YANG J J, LIU Z Z, JURCZAK P, et al. All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layer on Si substrates[J]. Journal of Physics D: Applied Physics, 2021, 54(3): 035103.
[24] [24] LI Q Z, WANG X, ZHANG Z Y, et al. Development of modulation p-doped 1310 nm InAs/GaAs quantum dot laser materials and ultrashort cavity fabry-perot and distributed-feedback laser diodes[J]. ACS Photonics, 2018, 5(3): 1084-1093.
[25] [25] HURTADO A, MEE J, NAMI M, et al. Tunable microwave signal generator with an optically-injected 1310nm QD-DFB laser[J]. Optics Express, 2013, 21(9): 10772.
[26] [26] CHEN C Y, CHENG C H, LIN F Y. Single-sideband photonic microwave generation with an optically injected quantum-dot semiconductor laser[J]. Optics Express, 2016, 24(26): 30537.
[27] [27] WANG C, RAGHUNATHAN R, SCHIRES K, et al. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation[J]. Optics Letters, 2016, 41(6): 1153-1156.
[28] [28] JIANG Z F, WU Z M, YANG W Y, et al. Numerical simulations on narrow-linewidth photonic microwave generation based on a QD laser simultaneously subject to optical injection and optical feedback[J]. Applied Optics, 2020, 59(9): 2935-2941.
[29] [29] JIANG Z F, WU Z M, YANG W Y, et al. Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback[J]. Chinese Physics B, 2021, 30(5): 050504.
Get Citation
Copy Citation Text
Jiang Zaifu, Zhang Dingmei, Tang Ruiyi. Narrow Linewidth Photonic Microwave Signal Generation Based on a Quantum Dot Laser[J]. APPLIED LASER, 2024, 44(1): 126
Category:
Received: Sep. 27, 2023
Accepted: --
Published Online: Jun. 4, 2024
The Author Email: Zaifu Jiang (jiangzaifu23003@163.com)