Progress in Geography, Volume. 39, Issue 4, 636(2020)

Daily runoff predication using LSTM at the Ankang Station, Hanjing River

Qingfang HU1,1、*, Shiyi CAO1,1, Huibin YANG1,1,2,2, Yintang WANG1,1, Linjie LI1,1, and Lihui WANG2,2
Author Affiliations
  • 1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
  • 1南京水利科学研究院水文水资源与水利工程科学国家重点实验室,南京 210029
  • 2Department of Water Resources, Hydropower and PortEngineering, Fuzhou University, Fuzhou 350116, China
  • 2福州大学水利水电与港口工程系,福州 350116
  • show less
    Figures & Tables(6)
    LSTM网络神经元结构示意图Fig.1
    研究区域与水文站点Fig.2
    安康及其上游石泉站2013—2014年逐日径流过程(局部)Fig.3
    LSTM模型安康站检验期逐日径流预测结果(方案1)Fig.4
    LSTM模型安康站检验期逐日径流预测结果(方案4)Fig.5
    LSTM模型安康站逐日径流预测结果(方案7)Fig.6
    Tools

    Get Citation

    Copy Citation Text

    Qingfang HU, Shiyi CAO, Huibin YANG, Yintang WANG, Linjie LI, Lihui WANG. Daily runoff predication using LSTM at the Ankang Station, Hanjing River[J]. Progress in Geography, 2020, 39(4): 636

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Nov. 4, 2019

    Accepted: --

    Published Online: Oct. 16, 2020

    The Author Email:

    DOI:10.18306/dlkxjz.2020.04.010

    Topics