Journal of Infrared and Millimeter Waves, Volume. 39, Issue 3, 388(2020)
Fig. 2. Feature extraction results of different convolution kernels: (a) original, (b) Laplacian, (c) Laplacian + horizontal gradient, (d) Laplacian + vertical gradient, (e) Laplacian + horizontal second gradient, (f) Laplacian + vertical second gradient, (g) horizontal gradient, (h) vertical gradient, (i) horizontal second gradient, (j) vertical second gradient.
Fig. 5. Comparison of image noise: (a) noise of LR image, (b) noise of reconstruction image by 4 times
Fig. 7. The process of saliency regional selective super-resolution reconstruction algorithm
Fig. 9. Comparison of reconstruction by different algorithms (a) LR image, (b) bicubic interpolation, (c)ScSR, and (d) proposed algorithm
Fig. 10. Results of super-resolution reconstruction (a)Yang algorithm, (b)SRCNN, (c) saliency-super-resolution, (d) saliency map
Fig. 11. Contrast of gray gradient value of adjacent pixels note: the x-coordinate is the x-coordinate value of the image pixels
Fig. 12. Comparison of background noise suppression results of different methods (a) LR noisy image, (b) ScSR, (c)SRCNN, (d) bicubic interpolation(BI), (e) median filtering(MF), (f) gaussian filtering(GF), (g) bilateral filtering(BF), (h) proposed algorithm(PA)
Fig. 13. SNR comparison of background noise suppression results of different methods. Note: the ordinate is the value of SNR
|
Get Citation
Copy Citation Text
Shuo HUANG, Yong HU, Cai-Lan GONG, Fu-Qiang ZHENG.
Category: Image Processing and Software Simulation
Received: May. 20, 2019
Accepted: --
Published Online: Jul. 7, 2020
The Author Email: Yong HU (huyong@mail.sitp.ac.cn)