Journal of Infrared and Millimeter Waves, Volume. 39, Issue 3, 388(2020)

Salience region super-resolution reconstruction algorithm for infrared images based on sparse coding

Shuo HUANG1,2,3, Yong HU1,3、*, Cai-Lan GONG1,3, and Fu-Qiang ZHENG1,2,3
Author Affiliations
  • 1Shanghai Institute of Technical Physics, Chinese Academy of Science , Shanghai200083, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • 3CAS Key Laboratory of Infrared System Detection and Imaging Technology, Shanghai Institute of Technical Physics, Shanghai20008, China
  • show less
    Figures & Tables(14)
    classification of super-resolution reconstruction method
    Feature extraction results of different convolution kernels: (a) original, (b) Laplacian, (c) Laplacian + horizontal gradient, (d) Laplacian + vertical gradient, (e) Laplacian + horizontal second gradient, (f) Laplacian + vertical second gradient, (g) horizontal gradient, (h) vertical gradient, (i) horizontal second gradient, (j) vertical second gradient.
    Dictionary training process
    Comparison of sparse dictionary (a) before; (b) after
    Comparison of image noise: (a) noise of LR image, (b) noise of reconstruction image by 4 times
    Saliency algorithm based on sparse features
    The process of saliency regional selective super-resolution reconstruction algorithm
    Training dataset
    Comparison of reconstruction by different algorithms (a) LR image, (b) bicubic interpolation, (c)ScSR, and (d) proposed algorithm
    Results of super-resolution reconstruction (a)Yang algorithm, (b)SRCNN, (c) saliency-super-resolution, (d) saliency map
    Contrast of gray gradient value of adjacent pixels note: the x-coordinate is the x-coordinate value of the image pixels
    Comparison of background noise suppression results of different methods (a) LR noisy image, (b) ScSR, (c)SRCNN, (d) bicubic interpolation(BI), (e) median filtering(MF), (f) gaussian filtering(GF), (g) bilateral filtering(BF), (h) proposed algorithm(PA)
    SNR comparison of background noise suppression results of different methods. Note: the ordinate is the value of SNR
    • Table 1. 不同方法的重建结果的指标比较

      View table
      View in Article

      Table 1. 不同方法的重建结果的指标比较

      双三次插值ScSRSRCNN本文方法
      PSNR30.9531.3932.1032.15
      RMSE7.226.876.336.29
    Tools

    Get Citation

    Copy Citation Text

    Shuo HUANG, Yong HU, Cai-Lan GONG, Fu-Qiang ZHENG. Salience region super-resolution reconstruction algorithm for infrared images based on sparse coding[J]. Journal of Infrared and Millimeter Waves, 2020, 39(3): 388

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing and Software Simulation

    Received: May. 20, 2019

    Accepted: --

    Published Online: Jul. 7, 2020

    The Author Email: Yong HU (huyong@mail.sitp.ac.cn)

    DOI:10.11972/j.issn.1001-9014.2020.03.018

    Topics