Journal of Synthetic Crystals, Volume. 49, Issue 6, 947(2020)

Brief Review of Lithium Niobate Crystal and Its Applications

SUN Jun1,2,3, HAO Yongxin1,2,3, ZHANG Ling1,2,3, XU Jingjun1,2,3, and ZHU Shining4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(140)

    [1] [1] Nassau K, Levinstein H J. Ferroelectric behavior of lithium niobate[J].Applied Physics Letters,1965,7(3): 69-70.

    [2] [2] Smolenskii G A, Krainik N N, Khuchua N P, et al. The curie temperature of LiNbO3[J].Physica Status Solidi B-basic Solid State Physics,1966,13(2): 309-314.

    [3] [3] Wemple S H, Didomenico M, Camlibel I, et al. Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization[J].Applied Physics Letters,1968,12(6): 209-211.

    [4] [4] Boyd G D, Miller R C, Nassau K, et al. LiNbO3: an efficient phase matchable nonlinear optical material[J].Applied Physics Letters,1964,5(11): 234-236.

    [5] [5] Burrows L. Now entering, lithium niobate valley [EB/OL].https: //www.seas.harvard.edu/news/2017/12/now-entering-lithium-niobate-valley,2017-12-21.

    [6] [6] Zachariasen W H. Norske videnskapsselsk. Skr.[J].Ada., Oslo, Mat. Naturv,1928,4.

    [7] [7] Lapitskii A V, Simanov Y P. Lithium metaniobate and metatantalate[J].Russian Journal of Physical Chemistry A,1955, 29.

    [8] [8] Reisman A, Holtzberg F. Heterogeneous equilibria in the systems Li2O-, Ag2O-Nb2O5 and oxide-models[J].Journal of the American Chemical Society,1958,80(24): 6503-6507.

    [9] [9] Reisman A, Holtzberg F, Banks E, et al. Reactions of the group VB pentoxides with alkali oxides and carbonates. VII. heterogeneous equilibria in the system Na2O or Na2CO3-Nb2O5[J].Journal of the American Chemical Society,1958,80(1): 37-42.

    [10] [10] Lerner P, Legras C, Dumas J P. Stoechiométrie des monocristaux de métaniobate de lithium[J].Journal of Crystal Growth,1968,3: 231-235.

    [11] [11] Scott B A, Burns G. Determination of Stoichiometry variations in LiNbO3 and LiTaO3 by Raman powder spectroscopy[J].Journal of the American Ceramic Society,1972,55(5): 225-230.

    [12] [12] Svaasand L O, Eriksrud M, Nakken G, et al. Solid-solution range of LiNbO3[J].Journal of Crystal Growth,1974,22(3): 230-232.

    [13] [13] Holman R L. Diffusion crucible and slab member with common metal component in the vapor phase: U.S. Patent 4,071,323[P].1978-1-31.

    [14] [14] Midwinter J E. Assessment of lithium-meta-niobate for nonlinear optics[J].Applied Physics Letters,1967,11(4): 128-130.

    [15] [15] Abrahams S C, Hamilton W C, Reddy J M. Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24℃[J].Journal of Physics & Chemistry of Solids,1966,27(6-7): 1013-1018.

    [16] [16] Abrahams S C, Buehler E, Hamilton W C, et al. Ferroelectric lithium tantalate—III. Temperature dependence of the structure in the ferroelectric phase and the para-electric structure at 940°K[J].Journal of Physics and Chemistry of Solids,1973,34(3): 521-532.

    [17] [17] Weis R S, Gaylord T K. Lithium niobate: summary of physical properties and crystal structure[J].Applied Physics A,1985,37(4): 191-203.

    [18] [18] Fay H, Alford W J, Dess H M, et al. Dependence of second-harmonic phase-matching temperature in LiNbO3 crystals on melt composition[J].Applied Physics Letters,1968,12(3): 89-92.

    [19] [19] Peterson G E, Carnevale A. 93Nb NMR linewidths in nonstoichiometric lithium niobate[J].The Journal of Chemical Physics,1972,56(10): 4848-4851.

    [20] [20] Abrahams S C, Marsh P. Defect structure dependence on composition in lithium niobate[J].Acta Crystallographica Section B: Structural Science,1986,42(1): 61-68.

    [21] [21] Smyth D M. Defects and transport in LiNbO3[J].Ferroelectrics,1983,50(1): 93-102.

    [22] [22] Iyi N, Kitamura K, Izumi F, et al. Comparative study of defect structures in lithium niobate with different compositions[J].Journal of Solid State Chemistry,1992,101(2): 340-352.

    [23] [23] Kong Y, Xu J, Chen X, et al. Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra[J].Journal of Applied Physics,2000,87(9): 4410-4414.

    [24] [24] Nassau K, Levinstein H J, Loiacono G M. Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching[J].Journal of Physics and Chemistry of Solids,1966,27(6-7): 983-988

    [25] [25] Brainerd J G, Jensen A G, Cumming L G, et al. Standards on piezoelectric crystals[J].Proc. IRE,1949,37(12): 1378-1395.

    [27] [27] Ashkin A, Boyd G D, Dziedzic J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J].Applied Physics Letters,1966,9(1): 72-74.

    [28] [28] Chen C T, Kim D, Linde D. Efficient pulsed photorefractive process in LiNbO3∶Fe for optical storage and deflection[J].IEEE Journal of Quantum Electronics,1980,16(2): 126-129.

    [29] [29] Krtzig E. Photorefractive effects and photoconductivity in LiNbO3∶Fe[J].Ferroelectrics,1978,21(1): 635-636.

    [30] [30] Buse K, Jermann F, Kratzig E, et al. Infrared holographic recording in LiNbO3∶Fe and LiNbO3∶Cu[J].Optical Materials,1995: 237-240.

    [31] [31] Prieto C, Zaldo C. Determination of the lattice site of Fe in photorefractive LiNbO3[J].Solid state communications,1992,83(10): 819-821.

    [32] [32] Buse K, Adibi A, Psaltis D, et al. Non-volatile holographic storage in doubly doped lithium niobate crystals[J].Nature,1998,393(6686): 665-668.

    [33] [33] Zhang G Y, Xu J, Liu S, et al. Study of resistance against photorefractive light-induced scattering in LiNbO3∶Fe,Mg crystals[J].Proceedings of SPIE-The International Society for Optical Engineering,1995,2529: 14-17.

    [34] [34] Zhang G, Sun Q, Xu J, et al. Fanning: noise-free double doped photorefractive LiNbO3 crystals used for 3D storage[J].Proceedings of SPIE-The International Society for Optical Engineering,1996,2849: 151-154.

    [35] [35] Zheng D, Kong Y, Liu S, et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals[J].Scientific Reports,2016,6(1): 20308-20308.

    [36] [36] Kong Y, Liu F, Tian T, et al. Fast responsive nonvolatile holographic storage in LiNbO3 triply doped with Zr, Fe, and Mn[J].Optics Letters,2009,34(24): 3896-3898.

    [37] [37] Xu J, Zhang G, Li F, et al. Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals.[J].Optics Letters,2000,25(2): 129-131.

    [38] [38] Lamarque T, Nicolaus R, Loiseaux B, et al. Programmable 2D laser marking device based on a pulsed UV image coherent amplifier[J].Proceedings of SPIE-The International Society for Optical Engineering,2003,5063: 386-388.

    [39] [39] Zhong J G, Jian J, Wu Z K. Measurement of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO[C].Proceedings of the 11th International Quantum Electronics Conference IEEE. NewYork,1980.

    [40] [40] Volk T R, Pryalkin V I, Rubinina N M. Optical-damage-resistant LiNbO3∶Zn crystal[J].Optics Letters,1990,15(18): 996-998.

    [41] [41] Yamamoto J K, Kitamura K, Iyi N, et al. Increased optical damage resistance in Sc2O3-doped LiNbO3[J].Applied Physics Letters,1992,61(18): 2156-2158.

    [42] [42] Kong Y, Wen J, Wang H, et al. New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3∶In[J].Applied Physics Letters,1995,66(3): 280-281.

    [44] [44] Schmidt R V, Kaminow I P. Metal-diffused optical waveguides in LiNbO3[J].Applied Physics Letters,1974,25(8): 458-460.

    [45] [45] Jackel J L, Rice C E, Veselka J J. Proton exchange for high-index waveguides in LiNbO3[J].Applied Physics Letters,1982,41(7): 607-608.

    [46] [46] Voskresenskii V M, Starodub O R, Sidorov N V, et al. Modeling of cluster formation in nonlinear optical lithium niobate crystal[J].Crystallography Reports,2011,56(2): 221-226.

    [47] [47] Palatnikov M N, Biryukova I V, Sidorov N V, et al. Growth and concentration dependencies of rare-earth doped lithium niobate single crystals[J].Journal of Crystal Growth,2006,291(2): 390-397.

    [48] [48] Hempstead M, Wilkinson J S, Reekie L, et al. Waveguide lasers operating at 1 084 nm in neodymium-diffused lithium niobate[J].IEEE Photonics Technology Letters,1992,4(8): 852-855.

    [49] [49] Lallier E, Pocholle J P, Papuchon M, et al.Laser oscillation of single-mode channel waveguide in Nd∶MgO∶LiNbO3[J].Electronics Letters,1989,25(22): 1491-1492.

    [50] [50] Fujimura M, Tsugawa H, Khan M S, et al. Nd-diffused Ti∶LiNbO3 z-propagation waveguide Q-switched lasers[J].Electronics Letters,1998,34(13): 1319-1321.

    [51] [51] Brüske D, Suntsov S, Rüter C E, et al.Efficient ridge waveguide amplifiers and lasers in Er-doped lithium niobate by optical grade dicing and three-side Er and Ti in-diffusion[J].Optics Express,2017,25(23): 29374-29379.

    [52] [52] Brüske D, Suntsov S, Rüter C E, et al.Efficient Nd∶Ti∶LiNbO3 ridge waveguide lasers emitting around 1 085 nm[J].Optics Express,2019,27(6): 8884-8889.

    [53] [53] Jechow A, Schedel M, Stry S, et al. Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm[J].Optics Letters,2007,32(20): 3035-3037.

    [55] [55] Gopalan, Venkatraman, Mitchell, et al. The role of nonstoichiometry in 180° domain switching of LiNbO3 crystals[J].Applied Physics Letters,1998,72(16): 1981-1983.

    [56] [56] Liu X, Terabe K, Kitamura K, et al. Ferroelectric nanodomain properties in near-stoichiometric and congruent LiNbO3 crystals investigated by scanning force microscopy[J].Japanese Journal of Applied Physics,2005,44(9): 7012-7014.

    [57] [57] Shoji I, Kondo T, Kitamoto A, et al. Absolute scale of second-order nonlinear-optical coefficients[J].Journal of The Optical Society of America B-optical Physics,1997,14(9): 2268-2294.

    [58] [58] Kong Y, Li B, Chen Y, et al. The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold[C].Photorefractive Effects, Materials, and Devices,2003.

    [59] [59] Fischer C, Whlecke M, Volk T, et al. Influence of the Damage Resistant Impurities Zn and Mg on the UV-Excited Luminescence in LiNbO3[J].Physica Status Solidi(a),1993,137(1): 247-255.

    [60] [60] Shoji I, et al. Properties of Stoichiometric LiNbO3[EB/OL].https: //www.opt-oxide.com/v2019/wp-content/uploads/2013/03/SLN_eng.pdf,2013-03-01.

    [61] [61] Polgár K, Péter, Kovács L, et al. Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method[J].Journal of Crystal Growth,1997,177(3-4): 211-216.

    [62] [62] Czochralski J. Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle[J].Zeitschrift für Physikalische Chemie,1918: 219-221.

    [63] [63] Ballman A A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique[J].Journal of the American Ceramic Society,1965,48(2): 112-113.

    [64] [64] Byer R L, Young J F, Feigelson R S. Growth of high-quality LiNbO3 crystals from the congruent melt[J].Journal of Applied Physics,1970,41(6): 2320-2325.

    [65] [65] Carruthers J R, Peterson G E, Grasso M, et al. Nonstoichiometry and crystal growth of lithium niobate[J].Journal of Applied Physics,1971,42(5): 1846-1851.

    [66] [66] Shigematsu K, Anzai Y, Morita S, et al. Growth conditions of subgrain-free LiNbO3 single crystals by the Czochralski method[J].Japanese Journal of Applied Physics,1987,26(12): 1988-1996.

    [69] [69] Matthes H. Growth of barium-lithium niobate single crystals by the czochralski method[J].Journal of Crystal Growth,1972,15(2): 157-158.

    [70] [70] Azarbayejani G H. Growth twinning in c-axis LiNbO3 crystals[J].Journal of Crystal Growth,1970,7(3): 327-328.

    [77] [77] Fukuda T, Hirano H. Growth and characteristics of LiNbO3 plate crystals[J].Materials Research Bulletin,1975,10(8): 801-806.

    [79] [79] Kitamura K, Yamamoto J K, Iyi N, et al. Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system[J].Journal of crystal growth,1992,116(3-4): 327-332.

    [80] [80] Furukawa Y, Sato M, Kitamura K, et al. Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method[J].Journal of Crystal Growth,1993,128(1-4): 909-914.

    [81] [81] Kitamura K, Furukawa Y, Iyi N. Progress in single crystal growth of LiNbO3 using double crucible czochralski method[J].Ferroelectrics,1997,202(1): 21-28.

    [82] [82] Sun J, Kong Y, Zhang L, et al. Growth of large-diameter nearly stoichiometric lithium niobate crystals by continuous melt supplying system[J].Journal of crystal growth,2006,292(2): 351-354.

    [83] [83] Kong Y, Sun J, Zhang L, et al. The growth of large-diametered nearly stoichiometric lithium niobate crystals by double crucible technique[C].Photorefractive Effects, Materials, and Devices. Optical Society of America,2005: 50.

    [84] [84] Zheng Y, Shi E, Wang S, et al. Domain structures and etching morphologies of lithium niobate crystals with different Li contents grown by TSSG and double crucible Czochralski method[J].Crystal Research and Technology: Journal of Experimental and Industrial Crystallography,2004,39(5): 387-395.

    [86] [86] Oxide, Nonlinear Optical Crystals-Mg: SLN / Mg: CLN[EB/OL]. https: //www.opt-oxide.com/products/sln/,2019-01-01.

    [87] [87] Malovichko G I, Grachev V G, Yurchenko L P, et al. Improvement of LiNbO3 microstructure by crystal growth with potassium[J].Physica Status Solidi(a),1992,133(1): K29-K32.

    [88] [88] Malovichko G I, Grachev V G, Kokanyan E P, et al. Characterization of stoichiometric LiNbO3 grown from melts containing K2O[J].Applied Physics A,1993,56(2): 103-108.

    [89] [89] Polgár K, Péter , Kovács L. Crystal growth and stoichiometry of LiNbO3 prepared by the flux method[J].Optical Materials,2002,19(1): 7-11.

    [91] [91] Holman R L, Cressman P J, Revelli J F. Chemical control of optical damage in lithium niobate[J].Applied Physics Letters,1978,32(5): 280-283.

    [92] [92] Jundt D H, Fejer M M, Norwood R G, et al. Composition dependence of lithium diffusivity in lithium niobate at high temperature[J].Journal of applied physics,1992,72(8): 3468-3473.

    [93] [93] Liang X, Xuewu X, Tow-Chong C, et al. Lithium in-diffusion treatment of thick LiNbO3 crystals by the vapor transport equilibration method[J].Journal of Crystal Growth,2004,260(1-2): 143-147.

    [97] [97] Curtis B J, Brunner H R. The growth of thin films of lithium niobate by chemical vapour de position[J].Materials Research Bulletin,1975,10(6): 515-520.

    [98] [98] Nunomura K, Ishitani A, Matsubara T, et al. Second harmonic generation in a sputtered LiNbO3 film on MgO[J].Journal of Crystal Growth,1978,45: 355-360.

    [99] [99] Betts R A, Pitt C W. Growth of thin-film lithium niobate by molecular beam epitaxy[J].Electronics Letters,1985,21(21): 960-962.

    [100] [100] Partlow D P, Greggi J. Properties and microstructure of thin LiNbO3 films prepared by a sol-gel process[J].Journal of Materials Research,1987,2(5): 595-605.

    [101] [101] Yanovskaya M I, Turevskaya E P, Leonov A P, et al. Formation of LiNbO3 powders and thin-films by hydrolysis of metal alkoxides[J].Journal of Materials Science,1988,23(2): 395-399.

    [102] [102] Rabson T A, Baumann R C, Rost T A. Thin film lithium niobate on silicon[J].Ferroelectrics,1990,112(1): 265-271.

    [103] [103] Shibata Y, Kaya K, Akashi K, et al. Epitaxial growth of LiNbO3 thin films by excimer laser ablation method and their surface acoustic wave properties[J].Applied Physics Letters,1992,61(8): 1000-1002.

    [104] [104] Kim D, Oh S, Lee S, et al. Structural and optical properties of LiNbO3 films grown by pulsed laser deposition with a shadow mask[J].Japanese Journal of Applied Physics,1998,37(4): 2016-2020.

    [105] [105] Lansiaux X, Dogheche E, Remiens D, et al. LiNbO3 thick films grown on sapphire by using a multistep sputtering process[J].Journal of Applied Physics,2001,90(10): 5274-5277.

    [106] [106] Ishihara M, Nakamura T, Kokai F, et al. Preparation of lithium niobate thin films on diamond-coated silicon substrate for surface acoustic devices[J].Diamond and Related Materials,2003,12(10): 1809-1813.

    [107] [107] Levy M, Osgood Jr R M, Liu R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J].Applied Physics Letters,1998,73(16): 2293-2295.

    [108] [108] Pastureaud T, Solal M, Biasse B, et al. High-frequency surface acoustic waves excited on thin-oriented LiNbO3 single-crystal layers transferred onto silicon[J].IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2007,54(4): 870-876.

    [109] [109] Rabiei P, Gunter P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J].Applied Physics Letters,2004,85(20): 4603-4605.

    [110] [110] Hu H, Ricken R, Sohler W. Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast[J].2009.

    [111] [111] Hu H, Gui L, Ricken R, et al. Towards nonlinear photonic wires in lithium niobate[C].Integrated Optics: Devices, Materials, and Technologies XIV. International Society for Optics and Photonics,2010,7604: 76040R.

    [113] [113] Yang Y, Lu R, Gong S, et al. Scaling acoustic filters towards 5G[C].International Electron Devices Meeting,2018: 39.6. 1-39.6. 4.

    [114] [114] Yang Y, Lu R, Manzaneque T, et al. Toward Ka band acoustics: lithium niobate asymmetrical mode piezoelectric MEMS resonators[C].International Frequency Control Symposium,2018: 1-5.

    [115] [115] Yang Y, Lu R, Gao L, et al. A C-band lithium niobate MEMS filter with 10% fractional bandwidth for 5G front-ends[C].International Ultrasonics Symposium,2019: 1981-1984.

    [116] [116] Poberaj G, Hu H, Sohler W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J].Laser & Photonics Reviews,2012,6(4): 488-503.

    [117] [117] Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J].Optica,2017,4(12): 1536-1537.

    [118] [118] Wang C, Zhang M, Stern B, et al. Nanophotonic lithium niobate electro-optic modulators[J].Optics Express,2018,26(2): 1547-1555.

    [119] [119] Haggerty J S. Production of fibers by a floating zone fiber drawing technique[J].1972.

    [120] [120] Fejer M M, Nightingale J L, Magel G A, et al. Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers[J].Review of Scientific Instruments,1984,55(11): 1791-1796.

    [121] [121] Luh Y S, Fejer M M, Byer R L, et al. Stoichiometric LiNbO3 single-crystal fibers for nonlinear optical applications[J].Journal of Crystal Growth,1987,85(1-2): 264-269.

    [122] [122] Magel G A, Lim E J, Fejer M M, et al. Second harmonic generation in periodically-poled LiNbO3[J].Optics News,1989,15(12): 20-21.

    [123] [123] Fejer M M, Yoo S J B, Byer R L, et al. Electric field dependence of optical absorption near the band gap of quantum-well structure[J].Phys. Rev. Lett.,1989,62(5): 1041-1045.

    [124] [124] Foulon G, Ferriol M, Brenier A, et al. Laser heated pedestal growth and optical properties of Yb3+-doped LiNbO3 single crystal fibers[J].Chemical Physics Letters,1995,245(6): 555-560.

    [125] [125] Yin S. Lithium niobate fibers and waveguides: fabrications and applications[J].Proceedings of the IEEE,1999,87(11): 1962-1974.

    [126] [126] Oguri H, Yamamura H, Orito T. Growth of MgO doped LiNbO3 single crystal fibers by a novel drawing down method[J].Journal of Crystal Growth,1991,110(4): 669-676.

    [127] [127] Ohnishi N, Yao T. A novel growth technique for single-crystal fibers: the micro-Czochralski (μ-CZ) method[J].Japanese Journal of Applied Physics,1989,28(2A): L278.

    [128] [128] Zhong H, Hou Y, Quan N, et al. Growth of lithium niobate single crystal fiber by an edge-defined, film-fed growth method[J].Crystal Research and Technology,1991,26(4): 395-399.

    [129] [129] Murata, Product information[EB/OL].https: //www.murata.com/,2017-08-09.

    [130] [130] Lewis M F. An improvement to SAW devices on lithium niobate[J].IEEE Transactions on Sonics and Ultrasonics,1982,29(1): 52-54.

    [131] [131] Standifer E M, Jundt D H, Norwood R G, et al. Chemically reduced lithium niobate single crystals: processing, properties and improvements in SAW device fabrication and performance[C].International Frequency Control Symposium,1998: 470-472.

    [132] [132] Photonics. Product[EB/OL].https: //photonics.ixblue.com/,2020-06-29.

    [133] [133] Armstrong J A, Bloembergen N, Ducuing J, et al. Interactions between light waves in a nonlinear dielectric[J].Physical Review,1962,127(6): 1918-1939.

    [134] [134] Camlibel I. Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method[J].Journal of Applied Physics,1969,40(4): 1690-1693.

    [135] [135] Feng D, Ming N B, Hong J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J].Applied Physics Letters,1980,37(7): 607-609.

    [136] [136] Ming N B, Hong J, Feng D, et al. The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals[J].Journal of Materials Science,1982,17(6): 1663-1670.

    [137] [137] Yamada M, Nada N, Saitoh M, et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation[J].Applied Physics Letters,1993,62(5): 435-436.

    [138] [138] Covesion. Covesion poling technology provides a versatile basis for the design and manufacture of unique PPLN crystals[EB/OL]. https: //www.covesion.com/products/custom-ppln-crystals.html,2020-06-25.

    [139] [139] Ming N B, Zhu Y Y, Feng D. Ferroelectric crystals with periodic laminar domains as the micron superlattices for optic acoustic processes[J].Ferroelectrics,1990,106(1): 99-104.

    [140] [140] Feng D, Zhu Y Y, Ming N. Harmonic generations in an optical Fibonacci superlattice[J].Physical Review B,1990,41(9): 5578.

    [141] [141] Zhu Y, Zhu S, Hong J, et al. Domain inversion in LiNbO3 by proton exchange and quick heat treatment[J].Applied Physics Letters,1994,65(5): 558-560.

    [142] [142] Zhu S, Zhu Y, Zhang Z, et al. LiTaO3 crystal periodically poled by applying an external pulsed field[J].Journal of Applied Physics,1995,77(10): 5481-5483.

    [143] [143] Zhu S, Zhu Y, Ming N. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J].Science,1997,278(5339): 843-846.

    [144] [144] Zhu Y, Xiao R F, Fu J S, et al. Third harmonic generation through coupled second-order nonlinear optical parametric processes in quasiperiodically domain-inverted Sr0.6Ba0.4Nb2O6 optical superlattices[J].Applied Physics Letters,1998,73(4): 432-434.

    [145] [145] Liu Z W, Zhu S N, Zhu Y Y, et al. A scheme to realize three-fundamental-colors laser based on quasi-phase matching[J].Solid State Communications,2001,119(6): 363-366.

    [146] [146] Zhu S, He J, Zhu Y, et al. Design of optical superlattice to realize third-harmonic generation and multi-wavelength laser output and its application in the all-solid state laser[P]. U.S. Patent: 6,714,569. 2004-3-30.

    [147] [147] Jin H, Liu F, Xu P, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits[J].Physical Review Letters,2014,113(10): 103601.

    [148] [148] Wei D, Wang C, Wang H, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J].Nature Photonics,2018,12(10): 596-600.

    [149] [149] Xu T, Switkowski K, Chen X, et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate[J].Nature Photonics,2018,12(10): 591-595.

    [150] [150] Wei D, Wang C, Xu X, et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J].Nature Communications,2019,10(1): 1-7.

    [151] [151] Kimura T, Omura M, Kishimoto Y, et al. Applicability Investigation of SAW Devices in the 3 to 5 GHz range[C].international microwave symposium,2018: 846-848.

    [152] [152] Lu R, Manzaneque T, Yang Y, et al. Towards digitally addressable delay synthesis: ghz low-loss acoustic delay elements from 20 NS to 900 NS[C].international conference on micro electro mechanical systems,2019: 121-124.

    [153] [153] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J].Nature,2018,562(7725): 101-104.

    [154] [154] He M, Xu M, Ren Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbits-1 and beyond[J].Nature Photonics,2019,13(5): 359-364.

    [155] [155] Lu C, Zhu B, Zhu C, et al. All-optical logic gates and a half-adder based on lithium niobate photonic crystal micro-cavities[J].Chinese Optics Letters,2019,17(7): 072301.

    [156] [156] Wooten E, Kissa K, Yiyan A, et al. A review of lithium niobate modulators for fiber-optic communications systems[J].IEEE Journal of Selected Topics in Quantum Electronics,2000,6(1): 69-82.

    [157] [157] Boes A, Corcoran B, Chang L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J].Laser & Photonics Reviews,2018,12(4): 1700256.

    [158] [158] Gao B, Ren M, Wu W, et al. Lithium niobate metasurfaces[J].Laser & Photonics Reviews,2019,13(5): 1800312.

    CLP Journals

    [1] SUN Jie, CHEN Huaixi, ZHANG Xinbin, FENG Xinkai, LI Guangwei, LIANG Wanguo. Frequency Doubled/Tripled Dual Wavelength Laser Based on Cascaded PPMgLN Crystal[J]. Journal of Synthetic Crystals, 2021, 50(7): 1386

    [2] YANG Jinfeng, SUN Jun, QIN Juan, LI Qinglian, SHANG Jifang, ZHANG Ling, XU Jingjun. From Mineral Gems to Photoelectric Functional Crystals——A Interpretation of Mr. Jiang Minhua’s Crystal Ode[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1541

    [3] XIAO Jing, CHANG Shuangju, ZHAO Li, ZHU Yabin, CHEN Yunlin. Optical and Electrical Properties of High Doping Zn/Mg LiNbO3 Films[J]. Journal of Synthetic Crystals, 2021, 50(9): 1648

    [4] LIU Hong, SANG Yuanhua, SUN Dehui, WANG Dongzhou, WANG Jiyang. Lithium Niobate Crystals in the Information Age: Progress and Prospect[J]. Journal of Synthetic Crystals, 2021, 50(4): 708

    [5] GAO Bofeng, REN Mengxin, ZHENG Dahuai, WU Wei, CAI Wei, SUN Jun, KONG Yongfa, XU Jingjun. Long-Lived Lithium Niobate: History and Progress[J]. Journal of Synthetic Crystals, 2021, 50(7): 1183

    Tools

    Get Citation

    Copy Citation Text

    SUN Jun, HAO Yongxin, ZHANG Ling, XU Jingjun, ZHU Shining. Brief Review of Lithium Niobate Crystal and Its Applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Aug. 7, 2020

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics