Journal of Synthetic Crystals, Volume. 51, Issue 9-10, 1560(2022)

High-Power Laser and Ultra-High Thermal Conductivity Laser Crystals

ZHANG Zhen1... FAN Zhongwei2 and SU Liangbi1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(89)

    [1] [1] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.

    [2] [2] GOULIELMAKIS E, SCHULTZE M, HOFSTETTER M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617.

    [3] [3] VINCENTI H, QUR F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses[J]. Physical Review Letters, 2012, 108(11): 113904.

    [4] [4] LI W Q, GAN Z B, YU L H, et al. 339 J high-energy Ti∶sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 2018, 43(22): 5681-5684.

    [5] [5] AYDIN Y O, FORTIN V, VALLE R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545.

    [7] [7] INJEYAN H, GOODNO G D, PENN M, et al. High-power laser handbook[M]. New York: McGraw-Hill, 2011

    [9] [9] ALBRECHT G F, SUTTON S B, GEORGE E V, et al. Solid state heat capacity disk laser[J]. Laser and Particle Beams, 1998, 16(4): 605-625.

    [10] [10] WALTERS C T, DULANEY J L, CAMPBELL B E, et al. Nd-glass burst laser with kW average power output[J]. IEEE Journal of Quantum Electronics, 1995, 31(2): 293-300.

    [11] [11] YAMAMOTO R M, PARKER J M, ALLEN K L, et al. Evolution of a solid state laser[C]//Defense and Security Symposium. Proc SPIE 6552, Laser Source Technology for Defense and Security III, Orlando, Florida, USA. 2007, 6552: 24-33.

    [12] [12] YAMAMOTO R M, BHACHU B S, CUTTER K P, et al. The use of large transparent ceramics in a high powered, diode pumped solid state laser[J]. 2008: WC5.

    [13] [13] LAFORTUNE K N, HURD R L, JOHANSSON E M, et al. Intracavity adaptive correction of a 10-kW solid state heat-capacity laser[C]//Lasers and Applications in Science and Engineering. Proc SPIE 5333, Laser Resonators and Beam Control VII, San Jose, Ca, USA. 2004, 5333: 53-61.

    [14] [14] VETROVEC J. Compact active mirror laser (CAMIL)[C]//High-Power Lasers and Applications. Proc SPIE 4630, Solid State Lasers XI, San Jose, California, USA. 2002, 4630: 1-12.

    [15] [15] KALISKY Y Y, KALISKY O. The status of high-power lasers and their applications in the battlefield[C]//2010: 091003.

    [16] [16] VETROVEC J, KOUMVAKALIS A, SHAH R D, et al. Development of solid state disk laser for high-average power[C]//High-Power Lasers and Applications. Proc SPIE 4968, Solid State Lasers XII, San Jose, CA, USA. 2003, 4968: 54-64.

    [17] [17] STEWEN C, CONTAG K, LARIONOV M, et al. A 1-kW CW thin disc laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(4): 650-657.

    [18] [18] AVIZONIS P V, BOSSERT D J, CURTIN M S, et al. Physics of high performance YB∶YAG thin disk lasers[C]//Conference on Lasers and Electro-Optics. Optical Society of America, 2009: CThA2.

    [19] [19] RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

    [20] [20] STILES E. New developments in IPG fiber laser technology[C]//Proceedings of the 5th International Workshop on Fiber Lasers. 2009: 2.

    [21] [21] SHINER B. The impact of fiber laser technology on the world wide material processing market[C]//CLEO: Applications and Technology. Optical Society of America, 2013: AF2 J.1.

    [22] [22] OTTO H J, JAUREGUI C, LIMPERT J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]// Fiber Lasers XIII: Technology, Systems, and Applications. Proc SPIE 9728, San Jose, California, USA. 2016, 9728: 82-87.

    [24] [24] DLEN X, PIEHLER S, DIDIERJEAN J, et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Optics Letters, 2012, 37(14): 2898-2900.

    [25] [25] DUBINSKII M, ZHANG J, FROMZEL V, et al. Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high efficiency fiber lasers[J]. Optics Express, 2018, 26(4): 5092-5101.

    [26] [26] CAHILL D G, LEE S M, SELINDER T I. Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings[J]. Journal of Applied Physics, 1998, 83(11): 5783-5786.

    [27] [27] GRIEBNER U, PETROV V, PETERMANN K, et al. Passively mode-locked Yb∶Lu2O3 laser[J]. Optics Express, 2004, 12(14): 3125-3130.

    [28] [28] BERMAN R, SIMON F E, WILKS J. Thermal conductivity of dielectric crystals: the ‘umklapp’ process[J]. Nature, 1951, 168(4268): 277-280.

    [29] [29] EUCKEN A. The heat conductivity of certain crystals at low temperatures[J]. Phys Zs, 1911, 12: 1005.

    [30] [30] BERMAN R, SIMON F E, ZIMAN J M. The thermal conductivity of diamond at low temperatures[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1953, 220(1141): 171-183.

    [31] [31] SLACK G A. Nonmetallic crystals with high thermal conductivity[J]. Journal of Physics and Chemistry of Solids, 1973, 34(2): 321-335.

    [32] [32] SLACK G A. The thermal conductivity of nonmetallic crystals[M]//Solid State Physics. Amsterdam: Elsevier, 1979: 1-71.

    [33] [33] TROPF W J, THOMAS M E, HARRIS T J. Properties of crystals and glasses[J]. Handbook of Optics, 1995, 2: 33-61.

    [35] [35] KANG J S, LI M, WU H, et al. Experimental observation of high thermal conductivity in boron arsenide[J]. Science, 2018, 361(6402): 575-578.

    [36] [36] KU S M. Preparation and properties of boron arsenides and boron arsenide-gallium arsenide mixed crystals[J]. Journal of the Electrochemical Society, 1966, 113(8): 813.

    [37] [37] TIAN F, SONG B, CHEN X, et al. Unusual high thermal conductivity in boron arsenide bulk crystals[J]. Science, 2018, 361(6402): 582-585.

    [38] [38] LINDSAY L, BROIDO D A, REINECKE T L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? [J]. Physical Review Letters, 2013, 111(2): 025901.

    [39] [39] WATANABE K, TANIGUCHI T, KANDA H. Ultraviolet luminescence spectra of boron nitride single crystals grown under high pressure and high temperature[J]. Physica Status Solidi (a), 2004, 201(11): 2561-2565.

    [40] [40] TANIGUCHI T, YAMAOKA S. Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure[J]. Journal of Crystal Growth, 2001, 222(3): 549-557.

    [41] [41] SLACK G A, SCHOWALTER L J, MORELLI D, et al. Some effects of oxygen impurities on AlN and GaN[J]. Journal of Crystal Growth, 2002, 246(3/4): 287-298.

    [42] [42] WANG Q K, LEI D, HE G D, et al. Characterization of 60 mm AlN single crystal wafers grown by the physical vapor transport method[J]. Physica Status Solidi (a), 2019, 216(16): 1900118.

    [43] [43] MUTH J F, BROWN J D, et al. Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys[J]. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4(S1): 502-507.

    [44] [44] YOSHIDA T, IMANISHI M, KITAMURA T, et al. Development of GaN substrate with a large diameter and small orientation deviationn[J]. Physica Status Solidi B, 2017, 254(8): 1600671.

    [45] [45] KANG J S, WU H, HU Y J. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications[J]. Nano Letters, 2017, 17(12): 7507-7514.

    [46] [46] ZHENG Q Y, LI S, LI C H, et al. High thermal conductivity in isotopically enriched cubic boron phosphide[J]. Advanced Functional Materials, 2018, 28(43): 1805116.

    [47] [47] NWAGWU U. Flux growth and characteristics of cubic boron phosphide[D]. Manhattan, Kansas: Kansas State University, 2013: 37-59.

    [48] [48] KUMASHIRO Y, YAO T, GONDA S. Crystal growth of boron phosphide by high pressure flux method[J]. Journal of Crystal Growth, 1984, 70(1/2): 515-518.

    [49] [49] WEBER M J. Handbook of optical materials[M]. Boca Raton, FL: CRC Press, 2002

    [50] [50] RICHMAN D. Vapor phase growth and properties of aluminum phosphide[J]. Journal of the Electrochemical Society, 2019, 115(9): 945.

    [51] [51] MONEMAR B. Determination of band gap and refractive index of AIP from optical absorption[J]. Solid State Communications, 1970, 8(16): 1295-1298.

    [52] [52] GOLDBERG Y A. Gallium phosphide (Gap)[M]//LEVINSHTEIN M, RUMYANTSEV S, SHUR M. Handbook Series on Semiconductor Parameters. Singapore: World Scientific Pub Co Inc, 1996: 104-124.

    [53] [53] YOUNG M, LIU X, ZHANG D, et al. Latest developments in vertical gradient freeze (VGF) technology: GaAs, InP, and GaP[J]. Materials Science and Engineering: B, 1999, 66(1/2/3): 1-6.

    [54] [54] MARINOPOULOS A G, VILO R C, VIEIRA R B L, et al. Defect levels and hyperfine constants of hydrogen in beryllium oxide from hybrid-functional calculations and muonium spectroscopy[J]. Philosophical Magazine, 2017, 97(24): 2108-2128.

    [55] [55] MASLOV V A, RYLOV G M, MAZURENKO V G, et al. Conditions of growth, structure, spectral and luminescent properties of crystals BeO[C]//Proceedings of the 6th International Conference on crystals growth, Institute of Crystallography, Moscow. 1980: 268-269.

    [56] [56] VLASKINA S I, SHIN D H. 6H to 3C polytype transformation in silicon carbide[J]. Japanese Journal of Applied Physics, 1999, 38(Part 2, No. 1A/B): L27-L29.

    [57] [57] POWELL A R, SUMAKERIS J J, KHLEBNIKOV Y, et al. Bulk growth of large area SiC crystals[C]//Materials Science Forum. Trans Tech Publications Ltd, 2016, 858: 5-10.

    [59] [59] BORMASHOV V S, TARELKIN S A, BUGA S G, et al. Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method[J]. Diamond and Related Materials, 2013, 35: 19-23.

    [60] [60] VINS V G, PESTRYAKOV E V. Color centers in diamond crystals: their potential use in tunable and femtosecond lasers[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 569-571.

    [61] [61] GROTJOHN T A, TRAN D T, YARAN M K, et al. Heavy phosphorus doping by epitaxial growth on the (111) diamond surface[J]. Diamond and Related Materials, 2014, 44: 129-133.

    [62] [62] NISHITANI-GAMO M, YASU E J, XIAO C Y, et al. Sulfur-doped homoepitaxial (001) diamond with n-type semiconductive properties[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 941-947.

    [63] [63] EKIMOV E A, KONDRIN M V. Vacancy-impurity centers in diamond: prospects for synthesis and applications[J]. Physics-Uspekhi, 2017, 60(6): 539-558.

    [64] [64] TCHERNIJ S D, HERZIG T, FORNERIS J, et al. Single-photon-emitting optical centers in diamond fabricated upon Sn implantation[J]. ACS Photonics, 2017, 4(10): 2580-2586.

    [65] [65] JAMISON K D, SCHMIDT H K. Doped diamond laser: US5504767[P]. 1996-04-02.

    [66] [66] SHIOMI H, NISHIBAYASHI Y, SHIKATA S I. Semiconductor lasers comprising rare earth metal-doped diamond: US5812573[P]. 1998-09-22.

    [67] [67] RAND S C, DESHAZER L G. Visible color-center laser in diamond[J]. Optics Letters, 1985, 10(10): 481-483.

    [68] [68] WILLIAMS R J, ONDREJ K, BAI Z X, et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-14.

    [69] [69] TAIROV Y M, KHLEBNIKOV I I, TSVETKOV V F. Investigation of silicon carbide single crystals doped with scandium[J]. Physica Status Solidi (a), 1974, 25(1): 349-357.

    [70] [70] KOZANECKI A, JANTSCH W, LANZERSTORFER S, et al. 1.54 μm Luminescence in Er and Er+O Implanted 6H SiC[C]//Materials Science Forum. Trans Tech Publications Ltd, 1997, 258: 1545-1550.

    [71] [71] WILSON R G, SCHWARTZ R N, ABERNATHY C R, et al. 1.54-μm photoluminescence from Er-implanted GaN and AlN[J]. Applied Physics Letters, 1994, 65(8): 992-994.

    [72] [72] MARTIN R. Rare Earth doped Ⅲ-nitrides for optoelectronic and spintronic applications: rare earth doped Ⅲ-nitrides for optoelectronic and spintronic applications[M]. Dordrecht: Springer, 2010: 189-219.

    [73] [73] MEZDROGINA M M, DANILOVSKII E Y, KUZ’MIN R V. Emission from rare-earth ions in GaN wurtzite crystals[J]. Inorganic Materials, 2011, 47(13): 1450-1469.

    [74] [74] LORENZ K, ALVES E, MONTEIRO T, et al. Optical doping of AlN by rare earth implantation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2006, 242(1/2): 307-310.

    [75] [75] YANG S, EVANS S M, HALLIBURTON L E, et al. Electron paramagnetic resonance of Er3+ ions in aluminum nitride[J]. Journal of Applied Physics, 2009, 105(2): 023714.

    [76] [76] PARK J H, STECKL A J. Laser action in Eu-doped GaN thin-film cavity at room temperature[J]. Applied Physics Letters, 2004, 85(20): 4588-4590.

    [77] [77] PARK J H, STECKL A J. Site specific Eu3+ stimulated emission in GaN host[J]. Applied Physics Letters, 2006, 88(1): 011111.

    [78] [78] USOV I, ARENDT P N. Method for implantation of high dopant concentrations in wide band gap materials: US20060286784[P]. 2006-12-21.

    [79] [79] ISHIKAWA R, LUPINI A R, OBA F, et al. Atomic structure of luminescent centers in high-efficiency Ce-doped w-AlN single crystal[J]. Scientific Reports, 2014, 4: 3778.

    [80] [80] SLACK G A, TANZILLI R A, POHL R O, et al. The intrinsic thermal conductivity of AIN[J]. Journal of Physics and Chemistry of Solids, 1987, 48(7): 641-647.

    [81] [81] AGGARWAL R L, RIPIN D J, OCHOA J R, et al. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300K temperature range[J]. Journal of Applied Physics, 2005, 98(10): 103514.

    [82] [82] GAUM R, VIANA B, VIVIEN D, et al. A simple model for the prediction of thermal conductivity in pure and doped insulating crystals[J]. Applied Physics Letters, 2003, 83(7): 1355-1357.

    [83] [83] SU L B, GUO X S, JIANG D P, et al. Highly-efficient mid-infrared CW laser operation in a lightly-doped 3at.% Er∶SrF2 single crystal[J]. Optics Express, 2018, 26(5): 5558-5563.

    [84] [84] FAN M Q, LI T, ZHAO J, et al. Continuous wave and ReS2 passively Q-switched Er∶SrF2 laser at ~3 μm[J]. Optics Letters, 2018, 43(8): 1726-1729.

    [85] [85] ZHANG Z, GUO X S, WANG J Y, et al. High-efficiency 2 μm continuous-wave laser in laser diode-pumped Tm3+, La3+∶CaF2 single crystal[J]. Optics Letters, 2018, 43(17): 4300-4303.

    [86] [86] WEI L, KUO P K, THOMAS R L, et al. Thermal conductivity of isotopically modified single crystal diamond[J]. Physical Review Letters, 1993, 70(24): 3764-3767.

    [87] [87] OZHOGIN V I, INYUSHKIN A V, TALDENKOV A N, et al. Isotope effect in the thermal conductivity of germanium single crystals[J]. Journal of Experimental and Theoretical Physics Letters, 1996, 63(6): 490-494.

    [88] [88] INYUSHKIN A V, TALDENKOV A N, YU YAKUBOVSKY A, et al. Thermal conductivity of isotopically enriched 71 crystal[J]. Semiconductor Science and Technology, 2003, 18(7): 685-688.

    [89] [89] KREMER R K, GRAF K, CARDONA M, et al. Thermal conductivity of isotopically enriched 28Si: revisited[J]. Solid State Communications, 2004, 131(8): 499-503.

    [90] [90] CHEN K, SONG B, RAVICHANDRAN N K, et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride[J]. Science, 2020, 367(6477): 555-559.

    [91] [91] JULIAN C L. Theory of heat conduction in rare-gas crystals[J]. Physical Review, 1965, 137(1A): A128-A137.

    [92] [92] BROIDO D A, MALORNY M, BIRNER G, et al. Intrinsic lattice thermal conductivity of semiconductors from first principles[J]. Applied Physics Letters, 2007, 91(23): 231922.

    [93] [93] LI S, ZHENG Q Y, LV Y C, et al. High thermal conductivity in cubic boron arsenide crystals[J]. Science, 2018, 361(6402): 579-581.

    [94] [94] QIAN X, ZHOU J W, CHEN G. Phonon-engineered extreme thermal conductivity materials[J]. Nature Materials, 2021, 20(9): 1188-1202.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Zhen, FAN Zhongwei, SU Liangbi. High-Power Laser and Ultra-High Thermal Conductivity Laser Crystals[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1560

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 1, 2022

    Accepted: --

    Published Online: Nov. 18, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics