Laser & Optoelectronics Progress, Volume. 62, Issue 14, 1439003(2025)

Infrared-Visible Image Fusion Network Based on Dual-Branch Feature Decomposition

Xundong Gao1、*, Hui Chen1,2、**, Yaning Yao1, and Chengcheng Zhang1
Author Affiliations
  • 1School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, Guangxi , China
  • 2Guangxi University Key Laboratory of Microwave and Optical Wave Application Technology, Guilin 541004, Guangxi , China
  • show less
    Figures & Tables(15)
    Network framework of DBDFuse. (a) Flowchart in training phase; (b) fusion layer in testing phase
    Detailed structures of Stoken Attention, Unfold, and Fold module
    Outlook Attention module structure
    Visualization of SOTA methods for infrared and visible light image fusion
    Qualitative results visualization of different methods
    Visualization of feature decomposition
    Visualization of fusion images generated by different loss functions
    • Table 1. Quantitative results of IVIF task on the LLVIP dataset

      View table

      Table 1. Quantitative results of IVIF task on the LLVIP dataset

      MethodENSFSDMISCDVIF
      DIDFuse7.0519.248.571.821.430.68
      DenseFuse7.0016.1050.211.871.320.64
      CDDFuse7.3420.5452.402.161.680.78
      FusionGan6.4512.0439.41.711.540.51
      ReCoNet7.3514.6344.891.481.230.62
      TarDAL6.5110.6553.121.561.460.63
      U2Fusion6.7819.7048.021.891.510.59
      DBDFuse7.4223.3659.182.561.520.80
    • Table 2. Quantitative results of IVIF task on the TNO dataset

      View table

      Table 2. Quantitative results of IVIF task on the TNO dataset

      MethodENSFSDMISCDVIF
      DIDFuse7.0313.1242.661.711.730.63
      DenseFuse6.988.7939.891.781.640.66
      CDDFuse7.1213.1746.532.091.760.71
      FusionGan6.678.7730.031.631.680.34
      ReCoNet7.108.7544.871.791.700.58
      TarDAL6.878.6846.631.861.560.53
      U2Fusion6.8611.5835.571.471.710.59
      DBDFuse7.1513.2348.101.961.790.72
    • Table 3. Quantitative results of IVIF task on the MSRS dataset

      View table

      Table 3. Quantitative results of IVIF task on the MSRS dataset

      MethodENSFSDMISCDVIF
      DIDFuse5.6410.1632.491.611.210.41
      DenseFuse6.258.6038.252.151.360.78
      CDDFuse6.7111.5443.363.461.621.07
      FusionGan5.898.7034.382.611.080.24
      ReCoNet6.7211.0243.442.161.450.74
      TarDAL5.658.2526.301.490.720.45
      U2Fusion6.249.0825.511.401.320.55
      DBDFuse6.8911.9843.642.981.641.12
    • Table 4. Ablation experimental results on the LLVIP dataset

      View table

      Table 4. Ablation experimental results on the LLVIP dataset

      MethodENSFSDSCDVIF
      Ⅰ:+Outlook7.0622.6258.641.480.70
      Ⅱ: +Stoken6.9421.4357.431.500.76
      Ⅲ: +CNN6.5320.5750.671.340.56
      Ⅳ: +Outlook+CNN6.8220.8652.351.380.61
      Ⅴ: +Stoken+CNN6.2120.9654.51.400.71
      DBDFuse7.4223.3659.181.520.80
    • Table 5. Quantitative comparison of the proposed method with different loss functions

      View table

      Table 5. Quantitative comparison of the proposed method with different loss functions

      ConfigurationENSFSDSCDVIF
      L16.0920.2250.821.350.66
      L25.9418.4852.541.150.57
      DBDFuse7.4223.3659.181.520.80
    • Table 6. Overall fusion time of 50 pairs of images

      View table

      Table 6. Overall fusion time of 50 pairs of images

      MethodImage pair fusion time /s
      TNO (25)LLVIP (25)MSRS (25)
      DenseFuse70.6876.2072.41
      DIDFuse39.4945.2540.57
      CDDFuse32.5842.6436.52
      FusionGan150.45175.74169.49
      ReCoNet70.5974.2370.89
      TarDAL50.759.6652.12
      U2Fusion65.6894.7069.02
      DBDFuse33.3142.3633.18
    • Table 7. Target detection evaluation value on the M3FD dataset

      View table

      Table 7. Target detection evaluation value on the M3FD dataset

      MethodCarLampPeopleTruckBusMotorcyclemAP@0.5
      VI90.4687.5270.9570.7878.2370.3478.04
      IR88.6571.6880.7666.278.6264.2375.02
      DenseFuse91.8784.1279.8669.8481.6567.9879.22
      DIDFuse92.7587.8480.1371.5482.9869.2480.74
      CDDFuse92.5882.7881.7771.5682.6271.7580.51
      FusionGan92.7484.6579.7769.4479.5568.7779.15
      ReCoNet92.4487.6280.4671.6579.8467.4579.91
      TarDAL94.7587.1181.1268.4581.3369.4580.36
      U2Fusion91.4588.1279.2469.5478.9269.9879.54
      DBDFuse92.6586.7481.7571.5882.6470.5680.98
    • Table 8. Semantic segmentation evaluation values on the LLVIP dataset.

      View table

      Table 8. Semantic segmentation evaluation values on the LLVIP dataset.

      MethodCarGuardrailPedestrianObstacleColor coneBikeCar stopBackgroundmIOU
      VI75.446.145.850.143.259.251.890.255.4
      IR67.442.946.248.240.251.835.288.350.6
      DenseFuse79.461.758.656.442.661.549.897.160.4
      DIDFuse78.651.263.059.844.661.252.497.560.9
      CDDFuse82.458.762.751.644.163.753.897.661.2
      FusionGan78.948.660.149.647.860.948.496.858.6
      ReCoNet80.260.155.753.742.862.749.597.559.5
      TarDAL79.659.461.254.846.364.450.397.161.5
      U2Fusion79.557.659.755.747.263.951.797.461.6
      DBDFuse83.162.564.057.149.665.453.197.763.9
    Tools

    Get Citation

    Copy Citation Text

    Xundong Gao, Hui Chen, Yaning Yao, Chengcheng Zhang. Infrared-Visible Image Fusion Network Based on Dual-Branch Feature Decomposition[J]. Laser & Optoelectronics Progress, 2025, 62(14): 1439003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: AI for Optics

    Received: Dec. 23, 2024

    Accepted: Mar. 2, 2025

    Published Online: Jul. 16, 2025

    The Author Email: Xundong Gao (xundonggao@guet.edu.cn), Hui Chen (Chenhui02@guet.edu.cn)

    DOI:10.3788/LOP242481

    CSTR:32186.14.LOP242481

    Topics