Chinese Journal of Lasers, Volume. 44, Issue 6, 602005(2017)

Propagation and Dislocation Development Properties of Laser Shock Waves in Monocrystalline Titanium Under Cryogenic Environment

Xu Gaofeng*, Zhou Jianzhong, Meng Xiankai, Huang Shu, Sun Yunhui, and Xu Yangyang
Author Affiliations
  • [in Chinese]
  • show less
    References(21)

    [1] [1] Chichili D R, Ramesh K T, Hemker K J. The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling[J]. Acta Materialia, 1998, 46(3): 1025-1043.

    [2] [2] Liao Y, Ye C, Lin D, et al. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening[J]. Journal of Applied Physics, 2012, 112(3).

    [3] [3] Ye C, Suslov S, Lin D, et al. Cryogenic ultrahigh strain rate deformation induced hybrid nanotwinned microstructure for high strength and high ductility[J]. Journal of Applied Physics, 2014, 115(21).

    [4] [4] Brown T L, Saldana C, Murthy T G, et al. A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper[J]. Acta Materialia, 2009, 57(18): 5491-5500.

    [5] [5] Jarmakani H N, Bringa E M, Erhart P, et al. Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals[J]. Acta Materialia, 2008, 56(19): 5584-5604.

    [6] [6] Ren J, Sun Q, Xiao L, et al. Phase transformation behavior in titanium single-crystal nanopillars under [0001]orientation tension: A molecular dynamics simulation[J]. Computational Materials Science, 2014, 92: 8-12.

    [7] [7] Ackland G J. Theoretical study of titanium surfaces and defects with a new many-body potential[J]. Philosophical Magazine Part A, 1992, 66(6): 917-932.

    [8] [8] Daw M S, Baskes M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals[J]. Phys Rev Lett, 1983, 50: 1285-1288.

    [9] [9] Kum O. Orientation effects in shocked nickel single crystals via molecular dynamics[J]. Journal of Applied Physics, 2003, 93(93): 3239-3247.

    [10] [10] Zimmerman J A, Webb E B I, Hoyt J J, et al. Calculation of stress in atomistic simulation[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(4): S319-S332.

    [11] [11] Chen Kaiguo, Zhu Wenjun, Ma Wen. Propagation of shockwave in nanocrystalline copper molecular dynamics simulation[J]. Acta Physica Sinica, 2010, 59(2): 1225-1231.

    [12] [12] Tsuzuki H, Branicio P S, Rino J P. Structural characterization of deformed crystals by analysis of common atomic neighborhood[J]. Computer Physics Communications, 2007, 177(6): 518-523.

    [13] [13] LAMMPS documentation manual[EB/OL]. [2016-12-15]. http://lammps.sandia.gov/doc/Manual.html.

    [14] [14] Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation andvariation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels[J]. Metallurgical and Materials Transactions A, 2009, 40(13): 3076-3090.

    [15] [15] Joshi K D, Gupta S C, Banerjee S. Shock Hugoniot of osmium up to 800 GPa from first principles calculations[J]. Journal of Physics: Condensed Matter, 2009, 21(41): 3160-3169.

    [16] [16] Marsh S P. Lasl shock hugoniot data[M]. California : University of California Press, 1980.

    [17] [17] Friedel J. Dislocations[M]. Wang Yu, Transl. Beijing: Science Press, 1984: 93-95.

    [18] [18] Gray G T I. Deformation twinning: Influence of strain rate[C]. Fall meeting of the Minerals, Metals and Materials Society: Physical metallurgy and materials, Pittsburgh, 1993: 10193638.

    [19] [19] Picu R C, Majorell A. Mechanical behavior of Ti-6Al-4V at high and moderate temperatures-Part Ⅱ: Constitutive modeling[J]. Material Science and Engineering: A, 2002, 326(2): 306-316.

    [20] [20] Meng Xiankai, Zhou Jianzhong, Huang Shu, et al. Molecular dynamics simulation of dislocation development in monocrystalline copper induced by warm laser peening[J]. Chinese J Lasers, 2015, 42(7): 0702003.

    [21] [21] Ma Wen. Molecular dynamics investigations on the mechanisms of plastic deformation and phase transformation of nanocrystalline metals under shock compression[D]. Changsha: National University of Defense Technology, 2011: 115-125.

    CLP Journals

    [1] Xu Yangyang, Zhou Jianzhong, Tan Wensheng, Meng Xiankai, Sheng Jie, Huang Shu, Sun Yunjie. Surface mechanical properties of 2024-T351 aluminum alloy strengthened by cryogenic laser peening[J]. Infrared and Laser Engineering, 2018, 47(12): 1206002

    Tools

    Get Citation

    Copy Citation Text

    Xu Gaofeng, Zhou Jianzhong, Meng Xiankai, Huang Shu, Sun Yunhui, Xu Yangyang. Propagation and Dislocation Development Properties of Laser Shock Waves in Monocrystalline Titanium Under Cryogenic Environment[J]. Chinese Journal of Lasers, 2017, 44(6): 602005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Jan. 9, 2017

    Accepted: --

    Published Online: Jun. 8, 2017

    The Author Email: Gaofeng Xu (m18852867169@163.com)

    DOI:10.3788/cjl201744.0602005

    Topics