Laser Technology, Volume. 47, Issue 2, 154(2023)

Progress and applications of 1.7 μm waveband fiber laser

NING Yuzhu1,2, ZHANG Peng1,2,3, HE Shuang1,2, LI Qi1,2, FAN Yunlong1,2, LIU Yang1,2, and HAN Kexuan4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(96)

    [1] [1] LI P X, YANG Ch, YAO Y F, et al. Research progress of 980 nm optical fiber laser [J]. Laser & Optoelectronics Progress, 2013, 50 (10): 100001(in Chinese).

    [4] [4] KIRSCH D C, CHEN S, SIDHARTHAN R, et al. Short-wave IR ultrafast fiber laser systems:Current challenges and prospective applications[J]. Journal of Applied Physics, 2020, 128(18): 180906.

    [5] [5] MINGAREEV I, WEIRAUCH F, OLOWINSKY A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.

    [6] [6] WOOD J, TURNER P H. Monitoring of itaconic acid hydrogenation in a trickle bed reactor using fiber-optic coupled near-infrared spectroscopy[J]. Applied Spectroscopy, 2003, 57(3): 293-298.

    [7] [7] MAEDA Y, YAMADA M, ENDO T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy[C]//2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology. Melbourne, Australia: IEEE, 2014: 410-411.

    [8] [8] CHAMBERS P, AUSTIN E A D, DAKIN J P. Theoretical analysis of a methane gas detection system, using the complementary source mo-dulation method of correlation spectroscopy[J]. Measurement Science and Technology, 2004, 15(8): 1629-1636.

    [9] [9] BASHKATOV A N, GENINA E A, KOCHUBEY V I, et al. Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm[J]. Optics and Spectroscopy, 2005, 99(5): 836-842.

    [10] [10] HORTON N G, WANG K, KOBAT D, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3): 205-209.

    [11] [11] TANAKA M, HIRANO M, MURASHIMA K, et al. 1.7 μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel[J]. Optics Express, 2015, 23(5): 6645-6655.

    [12] [12] GUESMI K, ABDELADIM L, TOZER S, et al. Dual-color deep-ti-ssue three-photon microscopy with a multiband infrared laser[J]. Light: Science & Applications, 2018, 7(1): 1-9.

    [13] [13] AKHOUNDI F, QIN Y, PEYGHAMBARIAN N, et al. Compact fiber-based multi-photon endoscope working at 1700 nm[J]. Biome-dical Optics Express, 2018, 9(5): 2326-2335.

    [14] [14] LU Y, LI Zh L, WANG X Ch, et al. Development of 50 kHz intravascular swept source coherence tomography system[J]. Chinese Journal of Lasers, 2017, 44 (2): 0207001(in Chinese).

    [15] [15] WU M, JANSEN K, VAN DER STEEN A F W, et al. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics[J]. Biomedical Optics Express, 2015, 6(9): 3276-3286.

    [16] [16] ALEXANDER V V, KE K, XU Z, et al. Photothermolysis of sebaceous glands in human skin ex vivo with a 1, 708 nm Raman fiber laser and contact cooling[J]. Lasers in Surgery and Medicine, 2011, 43(6): 470-480.

    [17] [17] HASEGAWA T, SOGAWA I, SUGANUMA H. A near infrared angioscope visualizing lipid within arterial vessel wall based on multi-spectral image in 1.7 μm wavelength band[C]//Endoscopic Microscopy Ⅷ. San Francisco, California, USA: International Society for Optics and Photonics, 2013: 8575-8581.

    [18] [18] BUMA T, CONLEY N C, CHOI S W. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser[J]. Biomedical Optics Express, 2018, 9(1): 276-288.

    [19] [19] ZHANG Y, ZHANG P, LIU P, et al. Fiber light source at 1.7 μm waveland and its application [J].Laser & Optoelectronics Progress, 2016, 53(9):090002(in Chinese).

    [20] [20] LI H, HUANG W, CUI Y L, et al.Progress and prospect of fiber lasers operating at 1.7 μm band [J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900001(in Chinese).

    [22] [22] AGGER S, POVLSEN J H, VARMING P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 2004, 29(13): 1503-1505.

    [23] [23] ZHU H, GUO J, DUAN Y, et al. Efficient 1.7 μm light source based on KTA-OPO derived by Nd∶YVO4 self-Raman laser[J]. Optics Letters, 2018, 43(2): 345-348.

    [24] [24] SUN J J, CHEN Y, ZHANG K, et al. Efficient continuous wave and acousto-optical Q-switched Tm∶Lu2O3 laser pumped by the laser diode at 1.7 μm[J]. Infrared Physics & Technology, 2021, 116: 103771.

    [25] [25] TILMA B W, JIAO Y, KOTANI J, et al. Integrated tunable quantum-dot laser for optical coherence to mography in the 1.7 μm wavelengthregion[J]. IEEE Journal of Quantum Electronics, 2012, 48(2): 87-98.

    [26] [26] XU J, WANG L, LIU J, et al. Narrow line-wide 1653 nm Raman fiber amplifiers [J]. Chinese Journal of Lasers, 2013, 40(6): 0602001(in Chinese).

    [27] [27] YAMADA M, ONO H, OHTA K, et al. 1.7 μm band optical fiber amplifier[C]//Optical Fiber Communication Conference. San Francisco, California, USA: Optical Society of America, 2014: Tu2D.

    [28] [28] LI Z, ALAM S U, DANIEL J M O, et al. 90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers[C]//2014 The European Conference on Optical Communication (ECOC). Cannes, France: IEEE, 2014: 1-3.

    [29] [29] EMAMI S D, KHODAEI A, GANDAN S, et al. Thulium-doped fiber laser utilizing a photonic crystal fiber-based optical low-pass filter with application in 1.7 μm and 1.8 μm band[J]. Optics Express, 2015, 23(15): 19681-19688.

    [30] [30] LI Z, JUNG Y, DANIEL J M O, et al. Extreme short wavelength operation (1.65-1.7 μm) of silica-based thulium-doped fiber amplifier[C]//Optical Fiber Communication Conference. Los Angeles, California, USA: Optical Society of America, 2015: Tu2C.

    [31] [31] ISHIDA S, NISHIZAWA N, OHTA T, et al. Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low-water-absorption samples[J]. Applied Physics Express, 2011, 4(5): 052501.

    [32] [32] KAWAGOE H, ISHIDA S, ARAMAKI M, et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomedical Optics Express, 2014, 5(3): 932-943.

    [33] [33] LI Z, JUNG Y, DANIEL J M O, et al. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers[J]. Optics Letters, 2016, 41(10): 2197-2200.

    [34] [34] CREEDEN D, JOHNSON B R, RINES G A, et al. High power re-sonant pumping of Tm-doped fiber amplifiers in core-and cladding-pumped configurations[J]. Optics Express, 2014, 22(23): 29067-29080.

    [35] [35] SHEN D Y, SAHU J K, CLARKSON W A. High-power widely tunable Tm∶fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm[J]. Optics Express, 2006, 14(13): 6084-6090.

    [36] [36] DANIEL J M O, SIMAKOV N, TOKURAKAWA M, et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 2015, 23(14): 18269-18276.

    [37] [37] PARK J, RYU S, YEOM D I. All-fiber Tm-Ho codoped laser ope-rating at 1700 nm[J]. Current Optics and Photonics, 2018, 2(4): 356-360.

    [38] [38] BURNS M D, SHARDLOW P C, BARUA P, et al. 47 W continuous-wave 1726 nm thulium fiber laser core-pumped by an erbium fiber laser[J]. Optics Letters, 2019, 44(21): 5230-5233.

    [39] [39] FIRSTOV S V, ALYSHEV S V, RIUMKIN K E, et al. Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm[J]. Optics Letters, 2015, 40(18): 4360-4363.

    [40] [40] DIANOV E M, FIRSTOV S V, KHOPIN V F, et al. Bismuth-doped fibers and fiber lasers for a new spectral range of 1600-1800 nm[C]//Fiber Lasers ∶Technology, Systems, and Applications. San Francisco, California, USA: International Society for Optics and Photonics, 2016: 9728.

    [41] [41] FIRSTOV S V, ALYSHEV S V, RIUMKIN K E, et al. Laser-active fibers doped with bismuth for a wavelength region of 1.6-1.8 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-15.

    [42] [42] NEMOVA G, QIAO J, CHEN L R, et al. Dual-wavelength, cascaded cavities bismuth-doped fiber laser in 1.7 μm wavelength range[C]// Fiber Lasers ⅩⅥ: Technology and Systems.San Francisco, California, USA: International Society for Optics and Photonics, 2019, 10897.

    [43] [43] THOUROUDE R, GILLES H, CADIER B, et al. Linearly-polarized high-power Raman fiber lasers near 1670 nm[J]. Laser Physics Let-ters, 2019, 16(2): 025102.

    [44] [44] THOUROUDE R, GILLES H, ROBIN T, et al. Efficient random Raman fiber laser at 1650 nm[C]//Applications of Lasers for Sensing and Free Space Communications. Vienna, Austria: Optical Society of America, 2019: JTh3A.

    [45] [45] LEHNEIS R, STEINMETZ A, LIMPERT J, et al. All-fiber pulse shortening of passively Q-switched microchip laser pulses down to sub-200 fs[J]. Optics Letters, 2014, 39(20): 5806-5809.

    [46] [46] ZHANG Z, YAN Z, ZHOU K, et al. All-fiber 250 MHz fundamental repetition rate pulsed laser with tilted fiber grating polarizer[J]. Laser Physics Letters, 2015, 12(4): 045102.

    [47] [47] ZHAO C, ZHANG H, QI X, et al. Ultra-short pulse generation by a topological insulator based saturable absorber[J]. Applied Physics Letters, 2012, 101(21): 211106.

    [48] [48] ZHANG Z, MOU C, YAN Z, et al. Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating[J]. Optics Express, 2013, 21(23): 28297-28303.

    [49] [49] OBER M H, HOFER M, FERMANN M E. 42-fs pulse generation from a mode-locked fiber laser started with a moving mirror[J]. Optics Letters, 1993, 18(5): 367-369.

    [50] [50] NGUYEN T N, KIEU K, CHURIN D, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm[J]. IEEE Photonics Technology Letters, 2013, 25(19): 1893-1896.

    [51] [51] NORONEN T, OKHOTNIKOV O, GUMENYUK R. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band[J]. Optics Express, 2016, 24(13): 14703-14708.

    [52] [52] CHUNG H Y, LIU W, CAO Q, et al. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 μm[J]. Optics Express, 2017, 25(14): 15760-15771.

    [53] [53] KHEGAI A, MELKUMOV M, RIUMKIN K, et al. NALM-based bismuth-doped fiber laser at 1.7 μm[J]. Optics Letters, 2018, 43(5): 1127-1130.

    [54] [54] CHEN S, CHEN Y, LIU K, et al. W-type normal dispersion thulium-doped fiber-based high-energy all-fiber femtosecond laser at 1.7 μm[J]. Optics Letters, 2021, 46(15): 3637-3640.

    [55] [55] MORIN P, BOIVINET S, YEHOUESSI J P, et al. Sub-150-fs all-fiber polarization maintaining tunable laser in the mid-infrared[C]// Fiber Lasers ⅩⅦ: Technology and Systems. San Francisco, California, USA: International Society for Optics and Photonics, 2020: 112601M.

    [56] [56] GRIMES A, HARIHARAN A, SUN Y, et al. Hundred-watt CW and Joule level pulsed output from Raman fiber laser in 1.7 μm band[C]//Fiber Lasers ⅩⅦ: Technology and Systems. San Francisco, California, USA: International Society for Optics and Photonics, 2020: 112601S.

    [57] [57] CHEN S, CHEN Y, LIU K, et al. All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber[J]. Optics Express, 2020, 28(12): 17570-17580.

    [58] [58] XUE G, ZHANG B, YIN K, et al. All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm[J]. Proceedings of the SPIE, 2015, 9255: 92550U.

    [59] [59] XIAO X Sh. 3W narrow-linewidth ultra-short wavelength operation near 1707nm in thulium-doped silica fiber laser with bidirectional pumping[J]. Applied Physics, 2017, B123(4): 1-6.

    [60] [60] ZHANG J X, SHENG Q, SUN Sh, et al. 1720 nm narrow-linewidth all-fiber ring laser based on thulium-doped fiber[C]//Fiber Lasers ⅩⅦ: Technology and Systems. San Francisco, California, USA: International Society for Optics and Photonics, 2020:112600V.

    [61] [61] ZHANG L, ZHANG J X, SHENG Q, et al. Efficient multi-watt 1720 nm ring-cavity Tm-doped fiber laser[J]. Optics Express, 2020, 28(25): 37910-37918.

    [62] [62] ZHANG J X, SHENG Q, ZHANG L, et al. Single-frequency 1.7 μm Tm-doped fiber laser with optical bistability of both power and longitudinal mode behavior[J]. Optics Express, 2021, 29(14): 21409-21417.

    [63] [63] ZHANG L, ZHANG J, SHENG Q, et al. Watt-level 1.7 μm single-frequency thulium-doped fiber oscillator[J]. Optics Express, 2021, 29(17): 27048-27056.

    [64] [64] ZHANG L, ZHANG J, SHENG Q, et al. 1.7 μm Tm-doped fiber laser intracavity-pumped by an erbium/ytterbium-codoped fiber laser[J]. Optics Express, 2021, 29(16): 25280-25289.

    [65] [65] CEN X, GUAN X, YANG C, et al. Short-wavelength, in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1.7 μm[J]. IEEE Photonics Technology Letters, 2021, 33(7): 350-353.

    [66] [66] ZHANG Y, SONG J, YE J, et al. Tunable random Raman fiber laser at 1.7 μm region with high spectral purity[J]. Optics Express, 2019, 27(20): 28800-28807.

    [67] [67] FANG X, WANG Z, ZHAN L. Efficient generation of all-fiber femtosecond pulses at 1.7 μm via soliton self-frequency shift[J]. Optical Engineering, 2017, 56(4): 046107.

    [68] [68] PEI W, LI H, HUANG W, et al. All-fiber tunable pulsed 1.7 μm fiber lasers based on stimulated raman scattering of hydrogen molecules in hollow-core fibers[J]. Molecules, 2021, 26(15): 4561.

    [69] [69] LI H, PEI W, HUANG W, et al. Highly efficient nanosecond 1.7 μm fiber gas Raman laser by H2-filled hollow-core photonic crystal fibers[J]. Crystals, 2021, 11(1): 32-34.

    [70] [70] PEI W, LI H, HUANG W, et al. Pulsed fiber laser oscillator at 1.7 μm by stimulated Raman scattering in H2-filled hollow-core photonic crystal fibers[J]. Optics Express, 2021, 29(21): 33915-33925.

    [71] [71] CHEN J X, LI X Y, LI T J, et al. 1.7-μm dissipative soliton Tm-doped fiber laser[J]. Photonics Research, 2021, 9(5): 873-878.

    [72] [72] DU T, RUAN Q, YANG R, et al. 1.7 μm Tm/Ho-codoped all-fiber pulsed laser based on intermode-beating modulation technique[J]. Journal of Lightwave Technology, 2018, 36(20): 4894-4899.

    [73] [73] HE X. Femtosecond fiber laser for deep biological tissue multiphoton [D]. Xi’an: Northwestern University, 2020:61-70(in Chinese).

    [74] [74] JELNKOV H, DOROSHENKO M E, ULC J, et al. Laser-diode pumped dysprosium-doped lead thiogallate laser output wavelength temporal evolution and tuning possibilities at 4.3-4.7 μm[C]//So-lid State Lasers ⅩⅩⅤ: Technology and Devices. San Francisco, California, USA: International Society for Optics and Photonics, 2016: 97261A.

    [75] [75] QUIMBY R S, SHAW L B, SANGHERA J S, et al. Modeling of cascade lasing in Dy∶chalcogenide glass fiber laser with efficient output at 4.5 μm[J]. IEEE Photonics Technology Letters, 2008, 20(2): 123-125.

    [76] [76] LIU Y, YU J L, WANG H J, et al. Tunable multiwavelength Bri-llouin-erbium fiber laser based on feedback fiber loop[J].Chinese Journal of Lasers, 2014, 41 (2): 202003(in Chinese).

    [77] [77] MA D, CAI Y, ZHOU C, et al. 37.4 fs pulse generation in an Er∶fiber laser at a 225 MHz repetition rate[J]. Optics Letters, 2010, 35(17): 2858-2860.

    [78] [78] HE Y L, LUO H Y, LI J, et al. High power all fiber passively mode-locked thulium-doped fiber laser [J]. High Power all Laser and Particle Beams, 2014, 26 (10): 102-106(in Chinese).

    [79] [79] ANSELMO C, WELSCHINGER J Y, CARIOU J P, et al. Gas concentration measurement by optical similitude absorption spectroscopy: Methodology and experimental demonstration[J]. Optics Express, 2016, 24(12): 12588-12599.

    [80] [80] ZHU Y J, FAN X H, GAO Ch, et al. Laser gas sensor for open path hydrogen chloride detection[J]. Laser Journal, 2017, 38 (7): 17-20(in Chinese).

    [81] [81] TANO Y, TANAKA M, HONDA Y, et al. Evaluation of high alcohol concentration using a 1.7 μm band near-infrared spectroscopy system using multi-mode optical fibers[C]//2018 23rd Opto-Electronics and Communications Conference (OECC). Jeju, Korea: IEEE, 2018: 1-2.

    [82] [82] VIZBARAS A, IMONYTE· I, MIASOJEDOVAS A, et al. Swept-wavelength lasers based on GaSb gain-chip technology for non-invasive biomedical sensing applications in the 1.7-2.5 μm wavelength range[J]. Biomedical Optics Express, 2018, 9(10): 4834-4849.

    [83] [83] MAJEWSKI M R, WOODWARD R I, JACKSON S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 2018, 43(5): 971-974.

    [84] [84] QU Ch B, KANG M Q, XIANG X J, et al. Theoretical study of 4.3 μm dual-wavelength pumped Dy:InF3 high energy med-infrared fiber lasers [J].Chinese Journal of Lasers, 2020, 47(8): 0801003 (in Chinese).

    [85] [85] DOROSHENKO M E, JELNKOV H, RˇHA A, et al. Mid-IR (4.4 μm) Zn1-x MnxSe:Cr2+, Fe2+(x=0.3) laser pumped by 1.7 μm laser using Cr2+-Fe2+ energy transfer[J]. Optics Letters, 2019, 44(11): 2724-2727.

    [86] [86] LI Y, MURTHY R S, ZHU Y, et al. 1.7-Micron optical coherence tomography angiography for characterization of skin lesions-a feasibility study[J]. IEEE Transactions on Medical Imaging, 2021, 40(9): 2507-2512.

    [87] [87] DASA M K, MARKOS C, MARIA M, et al. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region[J]. Biomedical Optics Express, 2018, 9(4): 1762-1770.

    [88] [88] LI C, SHI J, GONG X, et al. 1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging[J]. Optics Letters, 2018, 43(23): 5849-5852.

    [89] [89] LI M Sh, SHI J W, YIU C C Y, et al. Near-infrared double-illumination optical-resolution photoacoustic microscopy[J]. Journal of Biophotonics, 2021, 14(3): e202000392.

    [90] [90] LI C, SHI J, WANG X, et al. High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids[J]. Photonics Research, 2020, 8(2): 160-164.

    [91] [91] YOON T I, PARK J S, LEE B H, et al. Brain tumor margin detection using 1.7 μm spectroscopic swept-source OCT[C]//European Conference on Biomedical Optics. Munich, Germany: Optical Society of America, 2021: EW1C. 6(1-3).

    [92] [92] DU Q L. 1.7 μm fiber broadband light source and its application in optical coherence tomography system[D]. Changchun: Changchun University of Science and Technology, 2018:1-53(in Chinese).

    [93] [93] WU D, ZHANG P, LI X Y, et al. Broadband light source at 1.7 μm based on cascade-modulator pumping[J].Chinese Journal of Lasers, 2019, 46(5): 0506003(in Chinese).

    [94] [94] HE Zh X, ZHANG P, WU D, et al. Experimental study of a 1.7 μm tunable multi-wavelength Raman fiber laser based on an amplified spontaneous emission pump[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071403(in Chinese).

    [95] [95] HE Zh X. Research on technology of 1.7 μm pulse fiber laser [D]. Changchun: Changchun University of Science and Technology, 2020:1-64(in Chinese).

    [96] [96] LI Q, ZHANG P, FAN Y, et al. 1.7 μm gain-switched and mode-locked hybrid Tm-Ho codoped fiber laser signal generation and optimization[J]. Applied Optics, 2022, 61(2): 455-462.

    Tools

    Get Citation

    Copy Citation Text

    NING Yuzhu, ZHANG Peng, HE Shuang, LI Qi, FAN Yunlong, LIU Yang, HAN Kexuan. Progress and applications of 1.7 μm waveband fiber laser[J]. Laser Technology, 2023, 47(2): 154

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 7, 2022

    Accepted: --

    Published Online: Apr. 12, 2023

    The Author Email:

    DOI:10.7510/jgjs.issn.1001-3806.2023.02.002

    Topics