Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1237004(2024)

Inter-Layer Interpolation Method of CT Images Combined with Feature Pyramid and Deformable Separable Convolution

Zhihong Hu1, Xiaobao Liu1、*, Tinqiang Yao1, and Jihong Shen2
Author Affiliations
  • 1Facility of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan , China
  • 2First Affiliated Hospital of Kunming Medical University, Kunming 650093, Yunnan , China
  • show less
    Figures & Tables(14)
    Overall structure of the inter-layer interpolation network model
    Structures of the MultiRes block and Res path. (a) MultiRes block; (b) Res path
    Schematic diagrams of the standard convolution and DSepConv sampling position. (a) Standard convolution kernel; (b) DSepConv
    Schematic diagram of the DSepConv module
    Diagrams of triple groups samples
    Comparison of the effects between the images generated by the model and the actual inter-layer images. (a) Actual inter-layer images; (b) images generated by the network model; (c) partially enlarged images; (d) difference visualization of the images
    Visualization of the difference of the inter-layer images generated by different interpolation methods. (a) Proposed method; (b) RRIN; (c) SepConv; (d) RIFE; (e) AdaCof
    Comparison of interpolation results of different interpolation methods. (a) Actual inter-layer images; (b) proposed method; (c) RRIN; (d) SepConv; (e) RIFE; (f) AdaCof
    • Table 1. MultiResUNet architecture details

      View table

      Table 1. MultiResUNet architecture details

      MultiRes blockConvolution layer(size)FilterRes pathConvolution layer(size)Filter
      MultiRes block 1

      Conv2D(3×3)

      Conv2D(3×3)

      Conv2D(3×3)

      Conv2D(1×1)

      8

      17

      26

      51

      Res path 1

      Conv2D(3×3)

      Conv2D(1×1)

      Conv2D(3×3)

      Conv2D(1×1)

      Conv2D(3×3)

      Conv2D(1×1)

      64

      64

      64

      64

      64

      64

      MultiRes block 2

      MultiRes block 8

      Conv2D(3×3)

      Conv2D(3×3)

      Conv2D(3×3)

      Conv2D(1×1)

      17

      35

      53

      105

      MultiRes block 3

      MultiRes block 7

      Conv2D(3×3)

      Conv2D(3×3)

      Conv2D(3×3)

      Conv2D(1×1)

      35

      71

      106

      212

      Res path 2

      Conv2D(3×3)

      Conv2D(1×1)

      Conv2D(3×3)

      Conv2D(1×1)

      128

      128

      128

      128

      MultiRes block 4

      MultiRes block 6

      Conv2D(3×3)

      Conv2D(3×3)

      Conv2D(3×3)

      Conv2D(1×1)

      71

      142

      213

      426

      Res path 3

      Conv2D(3×3)

      Conv2D(1×1)

      256

      256

      MultiRes block 5

      Conv2D(3×3)

      Conv2D(3×3)

      Conv2D(3×3)

      Conv2D(1×1)

      142

      248

      427

      853

    • Table 2. Relevant informations of the public datasets for experiment

      View table

      Table 2. Relevant informations of the public datasets for experiment

      Dataset nameLocationData typeImage resolution /pixelInter-layer distance /mm
      TCGA-ESCAAbdomen and LungCT(Dicom)512×5122.5 or 1.2
      SPIE-AAPM Lung CT ChallengeLungCT(Dicom)512×5121.0
    • Table 3. Quantitative comparison results of each model in ablation experiment

      View table

      Table 3. Quantitative comparison results of each model in ablation experiment

      ModelPSNR /dBSSIMLPIPSParameters /106Memory size /MB
      U-Net+SepConv34.360.93730.016621.6882.7
      MultiResUNet+SepConv34.460.93510.01477.5128.7
      U-Net+DSepConv34.530.93630.018221.8784.0
      MultiResUNet+DSepConv34.610.93620.01548.2131.6
      MultiResUNet+DSepConv+IEM34.960.93810.016810.6641.0
    • Table 4. Inter-layer interpolation results based on different loss functions with different weights

      View table

      Table 4. Inter-layer interpolation results based on different loss functions with different weights

      Loss functionPSNR /dBSSIMLPIPS
      Lc32.290.95450.0187
      Lc+Lp33.920.96140.0091
      Lc+Ladv33.210.95810.0083
      Lc+Lp+Ladv33.850.96060.0086
      Lc+0.1Lp+0.01Ladv34.250.96250.0081
      Lc+0.01Lp+0.1Ladv34.170.96160.0074
      Lc+0.01Lp+0.01Ladv34.480.96360.0077
      Lc+0.01Lp+0.005Ladv34.760.96510.0079
    • Table 5. Inter-layer interpolation results under different learning rates

      View table

      Table 5. Inter-layer interpolation results under different learning rates

      Learning ratePSNR /dBSSIMLPIPS
      0.100033.740.95630.0096
      0.010034.210.96250.0085
      0.001034.760.96510.0079
      0.000134.550.96370.0081
    • Table 6. Quantitative comparison results of different interpolation methods

      View table

      Table 6. Quantitative comparison results of different interpolation methods

      MethodPSNR /dBSSIMLPIPSMemory size /MBTime /s
      RRIN33.05590.92570.022482.20.46
      SepConv33.47920.92930.023282.70.37
      RIFE33.63550.93340.036540.90.48
      AdaCof33.77860.93360.040983.30.43
      Ours34.15340.93650.018641.00.57
    Tools

    Get Citation

    Copy Citation Text

    Zhihong Hu, Xiaobao Liu, Tinqiang Yao, Jihong Shen. Inter-Layer Interpolation Method of CT Images Combined with Feature Pyramid and Deformable Separable Convolution[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1237004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jul. 31, 2023

    Accepted: Sep. 7, 2023

    Published Online: May. 20, 2024

    The Author Email: Xiaobao Liu (forcan2008@qq.com)

    DOI:10.3788/LOP231809

    CSTR:32186.14.LOP231809

    Topics