Laser & Optoelectronics Progress, Volume. 58, Issue 22, 2207001(2021)

Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network

Qingrong Wang... Lei Yang* and Songsong Wang |Show fewer author(s)
Author Affiliations
  • College of Electrical and Information Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • show less
    Figures & Tables(15)
    Structure of the CNN
    Flow chart of the model
    CWRU rolling bearing data acquisition system[22]
    Ten kinds of simulation signal diagrams. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
    Time frequency transformation results of 10 kinds of time domain signals. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
    Graying results of 10 kinds frequency images. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
    Experimental results of two activation functions
    Experimental results of different networks
    Performance comparison of 4 types of networks
    • Table 1. Experimental data

      View table

      Table 1. Experimental data

      TypeBearing conditionFault diameter /mmData lengthNumber of samplesLoadSpeed /(r·min-1)
      1norm01024200021797
      2slight damage to inner ring0.17781024200021797
      3moderate damage of inner ring0.35561024200021797
      4severe damage of inner ring0.53341024200021797
      5slight damage of rolling element0.17781024200021797
      6moderate damage of rolling element0.35561024200021797
      7rolling weight injury0.53341024200021797
      8slight damage of outer ring0.17781024200021797
      9slight damage of outer ring0.35561024200021797
      10slight damage of outer ring0.53341024200021797
    • Table 2. Fault code

      View table

      Table 2. Fault code

      Fault locationFault diameter /mmCode nameLabel
      None0a100000000
      Rolling element+inner ring0.1778b010000000
      Rolling element+outer ring0.3556c001000000
      Rolling element+outer ring0.5334d001000000
      Inner ring0.1778e000100000
      Inner ring0.3556f000010000
      Inner ring0.5334g000001000
      Outer ring0.1778i000000100
      Outer ring0.3556j000000010
      Outer ring0.5334k000000001
    • Table 3. Effects of different learning rates on network performance

      View table

      Table 3. Effects of different learning rates on network performance

      Learning rateAccuracy /%Training time /s
      169.64134
      0.134.42128
      0.0573.03132
      0.00599.87127
      0.00191.01144
    • Table 4. Effects of different Batchsize on network performance

      View table

      Table 4. Effects of different Batchsize on network performance

      BatchsizeAccuracy /%Training time /s
      899.81226
      1699.62141
      3291.38237
      6488.76124
      12880.52138
    • Table 5. Effects of different convolution kernel on network performance

      View table

      Table 5. Effects of different convolution kernel on network performance

      Convolution kernel sizeAccuracy /%Training time /s
      3×398.784
      5×593.298
      8×892.479
      12×1291.877
    • Table 6. Structural parameters of the CNN

      View table

      Table 6. Structural parameters of the CNN

      Network layer typeSpecific parameterNetwork layer output
      Inputinput of time-frequency diagram32×32
      C13×3 convolution kernels(32), in steps of 130×30×32
      S1maximum pool 2×2 cores, in steps of 115×15×32
      C23×3 convolution kernels(32), in steps of 213×13×32
      S2maximum pool 2×2 cores, in steps of 27×7×32
      FC1568 nodes1×1568
      Softmax10-classification1×10
    Tools

    Get Citation

    Copy Citation Text

    Qingrong Wang, Lei Yang, Songsong Wang. Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2207001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fourier Optics and Signal Processing

    Received: Nov. 30, 2020

    Accepted: Jan. 21, 2021

    Published Online: Oct. 29, 2021

    The Author Email: Lei Yang (1285412275@qq.com)

    DOI:10.3788/LOP202158.2207001

    Topics