Laser & Optoelectronics Progress, Volume. 58, Issue 22, 2207001(2021)
Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network
Fig. 4. Ten kinds of simulation signal diagrams. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
Fig. 5. Time frequency transformation results of 10 kinds of time domain signals. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
Fig. 6. Graying results of 10 kinds frequency images. (a) Normal signal; (b) OR 0.1778 nm; (c) OR 0.3556 mm; (d) OR 0.5334 mm; (e) B 0.1778 nm; (f) B 0.3556 mm; (g) B 0.5334 mm; (h) IR 0.1778 nm; (i) IR 0.3556 mm; (j) IR 0.5334 mm
|
|
|
|
|
|
Get Citation
Copy Citation Text
Qingrong Wang, Lei Yang, Songsong Wang. Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2207001
Category: Fourier Optics and Signal Processing
Received: Nov. 30, 2020
Accepted: Jan. 21, 2021
Published Online: Oct. 29, 2021
The Author Email: Lei Yang (1285412275@qq.com)