Laser & Infrared, Volume. 54, Issue 3, 416(2024)
Infrared diagnosis of rolling bearing faults based on WGAN-GP and CNN-SVM
[4] [4] LeCun Y, Bengio Y, Hinton G. Deep Learning[J]. Nature, 2015, 521(7553): 436-444.
[5] [5] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11).
[6] [6] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J]. Stat, 2017, 1050(26).
[8] [8] Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein gans[J]. Advances in Neural Information Processing Systems, 2017, 30.
[10] [10] Heusel M, Ramsauer H, Unterthiner T, et al. Gans trained by a two time-scale update rule converge to a local nash equilibrium[J]. Advances in Neural Information Processing Systems, 2017, 30.
Get Citation
Copy Citation Text
ZHOU Jian-min, SHEN Xi-wen, LIU Lu-lu. Infrared diagnosis of rolling bearing faults based on WGAN-GP and CNN-SVM[J]. Laser & Infrared, 2024, 54(3): 416
Category:
Received: May. 8, 2023
Accepted: Jun. 4, 2025
Published Online: Jun. 4, 2025
The Author Email: