Laser & Infrared, Volume. 54, Issue 3, 416(2024)

Infrared diagnosis of rolling bearing faults based on WGAN-GP and CNN-SVM

ZHOU Jian-min1,2, SHEN Xi-wen1,2, and LIU Lu-lu1,2
Author Affiliations
  • 1Key Laboratory of Transportation Equipment and Logistics of Jiangxi Province, East China Jiaotong University, Nanchang 330000, China
  • 2School of Mechanicals and Vehicle Engineering, East China Jiaotong University, Nanchang 330000, China
  • show less
    References(5)

    [4] [4] LeCun Y, Bengio Y, Hinton G. Deep Learning[J]. Nature, 2015, 521(7553): 436-444.

    [5] [5] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11).

    [6] [6] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J]. Stat, 2017, 1050(26).

    [8] [8] Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein gans[J]. Advances in Neural Information Processing Systems, 2017, 30.

    [10] [10] Heusel M, Ramsauer H, Unterthiner T, et al. Gans trained by a two time-scale update rule converge to a local nash equilibrium[J]. Advances in Neural Information Processing Systems, 2017, 30.

    Tools

    Get Citation

    Copy Citation Text

    ZHOU Jian-min, SHEN Xi-wen, LIU Lu-lu. Infrared diagnosis of rolling bearing faults based on WGAN-GP and CNN-SVM[J]. Laser & Infrared, 2024, 54(3): 416

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 8, 2023

    Accepted: Jun. 4, 2025

    Published Online: Jun. 4, 2025

    The Author Email:

    DOI:10.3969/j.issn.1001-5078.2024.03.013

    Topics