Journal of Synthetic Crystals, Volume. 52, Issue 1, 73(2023)

Optical Properties of InGaAs/GaAs Surface Quantum Dots Regulated by Introducing a Si Doped Interlayer

LIU Xiaohui*, LIU Jingtao, GUO Yingnan, WANG Ying, GUO Qinglin, LIANG Baolai, WANG Shufang, and FU Guangsheng
Author Affiliations
  • [in Chinese]
  • show less
    References(33)

    [5] [5] YUAN Q, LIU J T, LIANG B L, et al. Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots[J]. Journal of Luminescence, 2020, 218: 116870.

    [6] [6] WANG G D, LIANG B L, JUANG B C, et al. Comparative study of photoluminescence from In0.3Ga0.7As/GaAs surface and buried quantum dots[J]. Nanotechnology, 2016, 27(46): 465701.

    [7] [7] MILLA M J, ULLOA J M, GUZMN A. Photoexcited-induced sensitivity of InGaAs surface QDs to environment[J]. Nanotechnology, 2014, 25(44): 445501.

    [8] [8] MUKAI K, NAKATA Y, OTSUBO K, et al. High characteristic temperature of near-1.3-μm InGaAs/GaAs quantum-dot lasers at room temperature[J]. Applied Physics Letters, 2000, 76(23): 3349-3351.

    [9] [9] DROZDOWICZ-TOMSIA K, GOLDYS E M, FU L, et al. Doping effect on dark currents in In0.5Ga0.5AsGaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition[J]. Applied Physics Letters, 2006, 89(11): 113510.

    [10] [10] LU H F, FU L, JOLLEY G, et al. Temperature dependence of dark current properties of InGaAs/GaAs quantum dot solar cells[J]. Applied Physics Letters, 2011, 98(18): 183509.

    [11] [11] WANG Z M, MAZUR Y I, SEYDMOHAMADI S, et al. Photoluminescence linewidths from multiple layers of laterally self-ordered InGaAs quantum dots[J]. Applied Physics Letters, 2005, 87(21): 213105.

    [12] [12] CHEN M X, KOBASHI K. Probing into hybrid organic-molecule and InAs quantum-dots nanosystem with multistacked dots-in-a-well units[J]. Journal of Applied Physics, 2012, 112(6): 064903.

    [13] [13] WANG G D, JI H Q, SHEN J L, et al. Strong influence of temperature and vacuum on the photoluminescence of In0.3Ga0.7As buried and surface quantum dots[J]. Photonic Sensors, 2018, 8(3): 213-219.

    [14] [14] WANG G D, LIU Z G, WANG J J, et al. Gas sensitivity of In0.3Ga0.7As surface QDs coupled to multilayer buried QDs[J]. Photonic Sensors, 2020, 10(3): 283-290.

    [15] [15] MANNA S, HUANG H Y, DA SILVA S F C, et al. Surface passivation and oxide encapsulation to improve optical properties of a single GaAs quantum dot close to the surface[J]. Applied Surface Science, 2020, 532: 147360.

    [16] [16] LIN A, LIANG B L, DOROGAN V G, et al. Strong passivation effects on the properties of an InAs surface quantum dot hybrid structure[J]. Nanotechnology, 2013, 24(7): 075701.

    [17] [17] LIANG B L, WANG Z M, MAZUR Y I, et al. Correlation between surface and buried InAs quantum dots[J]. Applied Physics Letters, 2006, 89(4): 043125.

    [18] [18] LIU J T, LUO S P, LIU X H, et al. Carrier injection to In0.4Ga0.6As/GaAs surface quantum dots in coupled hybrid nanostructures[J]. Crystals, 2022, 12(3): 319.

    [19] [19] YANG X G, WANG K F, GU Y X, et al. Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping[J]. Solar Energy Materials and Solar Cells, 2013, 113: 144-147.

    [20] [20] WANG K F, GU Y X, YANG X G, et al. Si delta doping inside InAs/GaAs quantum dots with different doping densities[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2012, 30(4): 041808.

    [21] [21] LIANG B L, MAZUR Y I, KUNETS V P, et al. Enhanced photoluminescence from InAs/GaAs surface quantum dots by using a Si-doped interlayer[J]. Nanotechnology, 2008, 19(6): 065705.

    [22] [22] LV Z R, ZHANG Z K, YANG X G, et al. Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping[J]. Applied Physics Letters, 2018, 113(1): 011105.

    [23] [23] ZHANG Z Y, JUNG D, NORMAN J C, et al. Effects of modulation p doping in InAs quantum dot lasers on silicon[J]. Applied Physics Letters, 2018, 113(6): 061105.

    [24] [24] WANG H, LV Z R, ZHANG Z K, et al. Enhanced performance of InAs/GaAs quantum dot superluminescent diodes by direct Si-doping[J]. AIP Advances, 2020, 10(4): 045202.

    [25] [25] LIU X H, LIU J T, LIANG B L, et al. Type-II characteristics of photoluminescence from InGaAs/GaAs surface quantum dots due to Fermi level pinning effect[J]. Applied Surface Science, 2022, 578: 152066.

    [26] [26] WANG H L, YANG F H, FENG S L. Photoluminescence in Si and Be directly doped self-organized InAs/GaAs quantum dots[J]. Journal of Crystal Growth, 2000, 212(1/2): 35-38.

    [27] [27] NAH J. Growth and characterization of Si-doped self-assembled InAs quantum dots[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2005, 23(3): 1047.

    [28] [28] PARK Y M, PARK Y J, KIM K M, et al. Effects of Si-doped GaAs layer on optical properties of InAs quantum dots[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 25(4): 647-653.

    [29] [29] YUAN Q, LIANG B L, ZHOU C, et al. Interplay effect of temperature and excitation intensity on the photoluminescence characteristics of InGaAs/GaAs surface quantum dots[J]. Nanoscale Research Letters, 2018, 13(1): 387.

    [30] [30] NILSSON H H, ZHANG J Z, GALBRAITH I. Homogeneous broadening in quantum dots due to Auger scattering with wetting layer carriers[J]. 2005, 72(20): 205331.

    [31] [31] USKOV A V, MCINERNEY J, ADLER F, et al. Auger carrier capture kinetics in self-assembled quantum dot structures[J]. Applied Physics Letters, 1998, 72(1): 58-60.

    [32] [32] JIN S R, ZHENG Y L, LI A Z. Characterization of photoluminescence intensity and efficiency of free excitons in semiconductor quantum well structures[J]. Journal of Applied Physics, 1997, 82(8): 3870-3873.

    [33] [33] WANG Y, SHENG X Z, YUAN Q, et al. Carrier dynamics in hybrid nanostructure with electronic coupling from an InGaAs quantum well to InAs quantum dots[J]. Journal of Luminescence, 2018, 202: 20-26.

    [34] [34] ALONSO-LVAREZ D, ALN B, GARCA J M, et al. Optical investigation of type II GaSbGaAs self-assembled quantum dots[J]. Applied Physics Letters, 2007, 91(26): 263103.

    [35] [35] KLENOVSKY' P, STEINDL P, GEFFROY D. Excitonic structure and pumping power dependent emission blue-shift of type-II quantum dots[J]. Scientific Reports, 2017, 7: 45568.

    [36] [36] LU G Z, LV Z R, ZHANG Z K, et al. Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots[J]. Chinese Physics B, 2021, 30(1): 017802.

    Tools

    Get Citation

    Copy Citation Text

    LIU Xiaohui, LIU Jingtao, GUO Yingnan, WANG Ying, GUO Qinglin, LIANG Baolai, WANG Shufang, FU Guangsheng. Optical Properties of InGaAs/GaAs Surface Quantum Dots Regulated by Introducing a Si Doped Interlayer[J]. Journal of Synthetic Crystals, 2023, 52(1): 73

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 2, 2022

    Accepted: --

    Published Online: Mar. 18, 2023

    The Author Email: Xiaohui LIU (hui123zuibang@126.com)

    DOI:

    CSTR:32186.14.

    Topics