Journal of Quantum Optics, Volume. 27, Issue 1, 45(2021)

Quantum Dense Encoding of Anisotropic Heisenberg Spin Chain under Magnetic Field in Non-Markov Environment

TANG Shi-sheng, ZHANG Jin-feng, Akbar, and Abunizi·Ahmat*
Author Affiliations
  • [in Chinese]
  • show less
    References(32)

    [1] [1] Charles H. Bennett, Stephen J. Wiesner. Communication via one and two particle operators on Einstein-Podolsky-Rosen states[J]. Phys Rev Lett, 1992, 69(20):2881. DOI: https://doi.org/10.1103/PhysRevLett.69.2881.

    [2] [2] Sulayiman Simayi, et al. Dense coding with a two-qubit Heisenberg XYZ chain under the influence of phase decoherence[J]. Chin Phys B, 2011, 20(5):050305. DOI: 10.1088/1674-1056/20/5/050305.

    [6] [6] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channel[J]. Phys Rev Lett, 1993, 70(13):1895. DOI: 10.1103/PhysRevLett.70.1895.

    [7] [7] Bouwmeester D, Zeilinger A. Experimental quantum teleportation[J]. Nature, 1997, 390:575-579. DOI: https://doi.org/10.1038/37539.

    [8] [8] Lee H J, Ahn D, Hwang S W. Dense coding in entangled states[J]. Physical Review A, 2002, 66(2):024304. DOI: 10.1103/PhysRevA.66.024304.

    [9] [9] D’Arrigo A, Benenti G, Falci G, et al. Information transmission over an amplitude damping channel with an arbitrary degree of memory[J]. Physical Review A, 2015, 92(6):062342. DOI: 10.1103/PhysRevA.92.062342.

    [10] [10] Mattle K, Weinfurter H, Kwiat P G, et al. Dense Coding in Experimental Quantum Communication[J]. Phys Rev Lett, 1996, 76(25):4656. DOI: https://doi.org/10.1103/PhysRevLett.76.4656.

    [11] [11] Shadman Z, Kampermann H, Macchiavello C, et al. Optimal super dense coding over noisy quantum channels[J]. New Journal of Physics, 2010, 12(7):073042. DOI: 10.1088/1367-2630/12/7/073042.

    [12] [12] Bose S, Plenio M B. Vedral V. Mixed state dense coding and its relation to entanglement measures[J]. Journal of Modern Optics, 2000, 47(2-3):291-310. DOI: 10.1080/09500340008244043.

    [13] [13] Bareno A, Ekert A K. Dense coding based on quantum entanglement[J]. Journal of Modern Optics, 1995, 42(6):1253-1259. DOI: https://doi.org/10.1080/09500349514551091.

    [14] [14] Hao J C, Li C F, Guo G C. Controlled dense coding using the Greenberger-Horne-Zeilinger state[J]. Phys Rev A, 2001, 63(5):054301. DOI: https://doi.org/10.1103/PhysRevA.63.054301.

    [15] [15] Zhang J, Xie C D, Peng K C. Controlled dense coding for continuous variables using three-particle entangled states[J]. Phys Rev A, 2002, 66(3):032318. DOI: https://doi.org/10.1103/PhysRevA.66.032318.

    [16] [16] Meher N. Scheme for realizing quantum dense coding via entanglement swapping[J]. Journal of Physics B, 2020, 53(6):065502. DOI: 10.1088/1361-6455/ab68b6.

    [17] [17] Zhao X, Li Y Q, Cheng L Y, et al. The Quantum Dense Coding in a Two Atomic System Under the Non-Markovian Environment[J]. International Journal of Theoretical Physics, 2019, 58(2):493-501. DOI: 10.1007/s10773-018-3949-2.

    [18] [18] Li Y Q, Li X, Jia X F, et al. Quantum dense coding properties between two spatially separated atoms in free space[J]. International Journal of Theoretical Physics, 2020, 59:3378-3386. DOI: 10.1007/s10773-020-04594-y.

    [19] [19] Liang Q, An M W, Xiao Q S, et al. Effect of Dzyaloshinskii-Moriya anisotropic antisymmetric interaction on optimal dense coding[J]. Physica Scripta, 2009, 79(1):015005. DOI: 10.1088/0031-8949/79/01/015005.

    [20] [20] Zhang G F. Effect of anisotropy on optimal dense coding[J]. Physica Scripta, 2009, 79(1):015001. DOI: 10.1088/0031-8949/79/01/015001.

    [21] [21] He J, Liu Y, Ni Z X. Scheme for implementing quantum dense coding with W-class state in cavity QED[J]. Chin Phys B, 2008, 5:1597-1600. DOI: 10.1088/1674-1056/17/5/011.

    [22] [22] Bennett C H, Wiesner S J. Quantum cryptography using any two nonorthogonal states[J]. Phys Rev Lett, 1992, 68(21): 3121-3124. DOI: 10.1103/PhysRevLett.68.3121.

    [24] [24] Abbasnezhad F, Mehrabankar S, Afshar D. et al. Markovian thermal evolution of entanglement and decoherence of GHZ state[J]. Eur Phys J Plus, 2018, 133(298):12101. DOI: https://doi.org/10.1140/epjp/i2018-12101-4.

    [25] [25] Park D. Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment[J]. Quantum Inf Process, 2016, 15(8):3189-3208. DOI: https://doi.org/10.1007/s11128-016-1331-y.

    [27] [27] Diosi L, Gisin N, Strunz W T. Non-Markovian quantum state diffusion [J]. Phys Rev A, 1998, 58(3):1699. DOI: https://doi.org/10.1103/PhysRevA.58.1699.

    [28] [28] Laine E M, Breuer H P, Piilo J. Nonlocal memory effects allow perfect teleportation with mixed states[J]. Scientific Reports, 2014, 4:4620. DOI: 10.1038/srep04620.

    [29] [29] Jing J, Yu T, Lam C H, et al. Control relaxation via dephasing: an exact quantum state diffusion study[J]. Phys Rev A, 2018, 97(1):012104. DOI: https://doi.org/10.1103/PhysRevA.97.012104.

    [30] [30] Yu T. Non-Markovian quantum trajectories versus master equations: Finite-temperature heat bath[J]. Physical Review A, 2004, 69(6):062107. DOI: 10.1103/PhysRevA.69.062107.

    [31] [31] Zhao X Y, Jing, J, Corn B, Yu T. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach[J]. Phys Rev A, 2011, 84(3):032101. DOI: 10.1103/PhysRevA.84.032101.

    [32] [32] Zhao X Y, Shi W F, Wu L A, Yu T. Fermionic stochastic Schrodinger equation and master equation: An open-system model[J]. Phys Rev, 2012, 86(3):032116. DOI: 10.1103/PhysRevA.86.032116.

    [33] [33] Shi W, Zhao X Y, Yu T. Non-Markovian Fermionic Stochastic Schrodinger Equation for Open System Dynamics[J]. Physical Review A, 2013, 87(5):052127. DOI: 10.1103/PhysRevA.87.052127.

    [35] [35] Adriano Barenco, Artur K. Ekert. Dense Coding Based on Quantum Entanglement[J]. Journal of Modern Optics, 1955, 42(6):1253-1259. DOI: https://doi.org/10.1080/09500349514551091.

    [36] [36] JoséL.Cereceda. Maximally entangled states and the bell inequality[J]. Physics Letters A, 1996, 212(3):123-129. DOI: https://doi.org/10.1016/0375-9601(96)00026-6.

    [37] [37] Holevo A S. Bounds for the quantity of information transmitted by a quantum communication channel[J]. Problems of Information transmission, 1973, 9(3):177-183. DOI: http://mi.mathnet.ru/eng/ppi/v9/i3/p3.

    Tools

    Get Citation

    Copy Citation Text

    TANG Shi-sheng, ZHANG Jin-feng, Akbar, Abunizi·Ahmat. Quantum Dense Encoding of Anisotropic Heisenberg Spin Chain under Magnetic Field in Non-Markov Environment[J]. Journal of Quantum Optics, 2021, 27(1): 45

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 30, 2020

    Accepted: --

    Published Online: Sep. 13, 2021

    The Author Email: Abunizi·Ahmat (aahmad@126.com)

    DOI:10.3788/jqo20212701.0303

    Topics