Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1437011(2024)

Domain-Adaptive Person Search With Diverse Images and Instance Augmentation

Zhiqiang Dong, Jiale Cao*, and Aiping Yang
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(15)
    Overall architecture of domain-adaptive person search with diverse images and instance augmentation
    Examples of different image augmentation strategies
    Negative-enhanced re-id learning module
    Visualization of changing trends during training. (a) mAP; (b) number of pseudo persons in memory bank; (c) number of target-domain false positives; (d) number of source-domain negatives
    Examples of diverse negatives mined in target domain
    Examples of diverse negatives mined in source domain
    • Table 1. Comparison with state-of-the-art methods on CUHK-SYSU and PRW test sets

      View table

      Table 1. Comparison with state-of-the-art methods on CUHK-SYSU and PRW test sets

      MethodCUHK-SYSUPRW
      mAP /%Top-1 /%mAP /%Top-1 /%
      NPSM2277.981.224.253.1
      CLSA887.288.538.765.0
      RCAA2379.381.3
      IAN2476.380.123.061.9
      CTXG2584.186.533.473.6
      QEEPS2688.989.137.176.7
      Traditional fully-supervised approachHOIM2789.790.839.880.4
      RDLR2893.094.242.970.2
      APNet2988.989.341.981.4
      BINet3090.090.745.381.7
      NAE1091.592.443.380.9
      NAE+1092.192.944.081.1
      PGSFL3190.291.842.583.5
      SeqNet1993.894.646.783.4
      AlignPS1593.193.445.981.9
      SeqNet1952.554.830.377.7
      AlignPS1539.744.027.977.4
      Domain-adaptive approachDAPS1877.679.634.780.6
      DIIA (ours)80.081.440.881.0
    • Table 2. Comparison of cross domain re-identification accuracy and speed of person search methods on the CUHK-SYSU dataset

      View table

      Table 2. Comparison of cross domain re-identification accuracy and speed of person search methods on the CUHK-SYSU dataset

      MethodmAP /%Time /ms
      SeqNet1952.586
      AlignPS1539.761
      DAPS1877.682
      DIIA (ours)80.082
    • Table 3. Influence of different components when source domain is PRW and target domain is CUHK-SYSU

      View table

      Table 3. Influence of different components when source domain is PRW and target domain is CUHK-SYSU

      NumberSIANRLmAP /%Top-1 /%AP /%
      77.679.668.3
      78.380.169.7
      80.081.470.1
    • Table 4. Influence of different components when source domain is CUHK-SYSU and target domain is PRW

      View table

      Table 4. Influence of different components when source domain is CUHK-SYSU and target domain is PRW

      NumberSIANRLmAP/%Top-1/%AP/%
      34.780.689.9
      37.380.690.2
      40.881.090.3
    • Table 5. Influence of image augmentation on different domains

      View table

      Table 5. Influence of image augmentation on different domains

      NumberMethodmAP /%Top-1 /%
      No image augmentation77.679.6
      Target-domain image augmentation69.771.4
      Dual-domain image augmentation71.572.9
      Source-domain image augmentation78.380.1
    • Table 6. Influence of different image augmentation strategies on our SIA module

      View table

      Table 6. Influence of different image augmentation strategies on our SIA module

      NumberMethodmAP /%Top-1 /%
      No image augmentation77.679.6
      Only Gaussian blur77.979.8
      Only color jitter78.079.6
      Only elastic transform78.179.9
      All78.380.1
    • Table 7. Influence of two strategies in DNM module

      View table

      Table 7. Influence of two strategies in DNM module

      NumberMethodmAP /%Top-1 /%
      SIA78.380.1
      SIA+TFPR79.380.6
      SIA+SNDU79.080.3
      SIA+TFPR+SNDU80.081.4
    • Table 8. Influence of number of recycled false positives in TFPR

      View table

      Table 8. Influence of number of recycled false positives in TFPR

      NumberMethodmAP /%Top-1 /%
      Without TFPR78.380.1
      Last 10 false positives78.980.5
      Same number of positives79.380.6
    • Table 9. Influence of threshold setting in SNDU

      View table

      Table 9. Influence of threshold setting in SNDU

      NumberMethodmAP /%Top-1 /%
      Without SNDU78.380.1
      Fixed threshold 0.878.680.3
      Dynamic threshold79.080.3
    Tools

    Get Citation

    Copy Citation Text

    Zhiqiang Dong, Jiale Cao, Aiping Yang. Domain-Adaptive Person Search With Diverse Images and Instance Augmentation[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1437011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Nov. 30, 2023

    Accepted: Jan. 8, 2024

    Published Online: Jul. 8, 2024

    The Author Email: Jiale Cao (connor@tju.edu.cn)

    DOI:10.3788/LOP232590

    CSTR:32186.14.LOP232590

    Topics