Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0900008(2024)
Progress in Semiconductor Saturable Absorption Mirror Mode-Locked Laser
[1] Shu Q, Shu Y C, Liu R B et al. Development of semiconductor saturable absorption mirror used for high average output power ultrashort pulses laser[J]. Laser & Infrared, 37, 197-199, 210(2007).
[2] Keller U, Miller D A, Boyd G D et al. Solid-state low-loss intracavity saturable absorber for Nd∶YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Optics Letters, 17, 505-507(1992).
[3] de Souza E A, Soccolich C E, Pleibel W et al. Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser[J]. Electronics Letters, 29, 447-449(1993).
[4] Häring R, Paschotta R, Morier-Genoud F et al. Passively mode-locked diode-pumped surface-emitting semiconductor laser[J]. IEEE Photonics Technology Letters, 12, 1135-1137(2000).
[5] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser[J]. Optics Letters, 16, 42-44(1991).
[6] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 424, 831-838(2003).
[7] Zhou B K, GAO Y Z, CHEN T R et al[M]. Laser principle, 234(2004).
[8] Brovelli L R, Keller U, Chiu T H. Design and operation of antiresonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers[J]. Journal of the Optical Society of America, 12, 311-322(1995).
[9] Keller U, Chiu T H, Ferguson J F. Self-starting and self-Q-switching dynamics of passively mode-locked Nd: YLF and Nd: YAG lasers[J]. Optics Letters, 18, 217-219(1993).
[10] Kärtner F X, Brovelli L R, Kopf D et al. Control of solid state laser dynamics by semiconductor devices[J]. Optical Engineering, 34, 2024-2036(1995).
[11] Fluck R, Jung I D, Zhang G et al. Broadband saturable absorber for 10-fs pulse generation[J]. Optics Letters, 21, 743-745(1996).
[12] Zhang Z G, Chai L, Zhao J S et al. Semiconductor saturable-absorber mirror for self-starting mode-locked Ti∶Sapphire lasers[J]. Acta Optica Sinica, 22, 1151-1152(2002).
[13] Keller U. Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight[J]. Applied Physics B, 100, 15-28(2010).
[14] Fluck R, Weingarten K J, Moser M et al. Diode-pumped passively mode-locked 1.3-μm Nd∶YVO4 and Nd∶YLF lasers by use of semiconductor saturable absorbers[J]. Optics Letters, 21, 1378-1380(1996).
[15] Jung I D, Kärtner F X, Matuschek N et al. Semiconductor saturable absorber mirrors supporting sub-10-fs pulses[J]. Applied Physics B, 65, 137-150(1997).
[16] Grange R, Schön S, Liverini V et al. A low-loss and low-saturation-fluence GaInNAs SESAM for ultrafast 1.3-μm solid-state lasers[C], WE3(2004).
[17] Spühler G J, Weingarten K J, Grange R et al. Semiconductor saturable absorber mirror structures with low saturation fluence[J]. Applied Physics B, 81, 27-32(2005).
[18] Fluck R, Braun B, Gini E et al. Passively Q-switched 1.34-µm Nd∶YVO4 microchip laser with semiconductor saturable-absorber mirrors[J]. Optics Letters, 22, 991-993(1997).
[19] Marchese S V, Baer C R, Engqvist A G et al. Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level[J]. Optics Express, 16, 6397-6407(2008).
[20] Saraceno C J, Schriber C, Mangold M et al. SESAMs for high power oscillators: damage thresholds and design guidelines[C], CFO1(2011).
[21] Saraceno C J, Hoffmann M, Schriber C et al. SESAMs for high-power femtosecond modelocking: influence of growth temperature on damage and nonsaturable losses[C], AM4A.13(2012).
[22] Alfieri C G E, Diebold A, Emaury F et al. Improved SESAMs for femtosecond pulse generation approaching the kW average power regime[J]. Optics Express, 24, 27587-27599(2016).
[23] Alfieri C G E, Diebold A, Kopp M et al. SESAMs for high-power lasers[C], SM1I.5(2016).
[24] Unold H J, Lorenser D, Maas D J H C et al. Towards wafer-scale integration of high-repetition-rate passively mode-locked surface-emitting semiconductor lasers[C].
[25] Maas D J H C, Bellancourt A R, Rudin B et al. MIXSELs-a new class of ultrafast semiconductor lasers[C](2007).
[26] Maas D J H C, Bellancourt A R, Rudin B et al. Vertical integration of ultrafast semiconductor lasers[J]. Applied Physics B, 88, 493-497(2007).
[27] Rudin B, Wittwer V J, Maas D J H C et al. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power[J]. Optics Express, 18, 27582-27588(2010).
[28] Finke T, Nürnberg J, Sichkovskyi V et al. Temperature resistant fast InxGa1–xAs/GaAs quantum dot saturable absorber for the epitaxial integration into semiconductor surface emitting lasers[J]. Optics Express, 28, 20954-20966(2020).
[29] Diebold A, Zengerle T, Mangold M et al. Optimized SESAMs for kilowatt ultrafast lasers[C], STu1O.5(2015).
[30] Diebold A, Zengerle T, Alfieri C G E et al. Optimized SESAMs for kilowatt-level ultrafast lasers[J]. Optics Express, 24, 10512-10526(2016).
[31] Keller U. Ultrafast solid-state lasers[C](2007).
[32] Baer C R E, Heckl O H, Saraceno C J et al. Frontiers in passively mode-locked high-power thin disk laser oscillators[J]. Optics Express, 20, 7054-7056(2012).
[33] der Au J A, Spühler G J, Südmeyer T et al. 16.2-W average power from a diode-pumped femtosecond Yb: YAG thin disk laser[J]. Optics Letters, 25, 859-861(2000).
[34] Innerhofer E, Südmeyer T, Brunner F et al. 60-W average power in 810-fs pulses from a thin-disk Yb∶YAG laser[J]. Optics Letters, 28, 367-369(2003).
[35] Saraceno C J, Heckl O H, Baer C R E et al. Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser[J]. Applied Physics B, 106, 559-562(2012).
[36] Diebold A, Emaury F, Schriber C et al. SESAM mode-locked Yb∶CaGdAlO4 thin disk laser with 62 fs pulse generation[J]. Optics Letters, 38, 3842-3845(2013).
[37] Schriber C, Emaury F, Diebold A et al. Dual-gain SESAM modelocked thin disk laser based on Yb: Lu2O3 and Yb: Sc2O3[J]. Optics Express, 22, 18979-18986(2014).
[38] Saraceno C J, Emaury F, Schriber C et al. Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power[J]. Optics Letters, 39, 9-12(2013).
[39] Saltarelli F, Graumann I J, Lang L et al. Power scaling of ultrafast oscillators: 350-W average-power sub-picosecond thin-disk laser[J]. Optics Express, 27, 31465-31474(2019).
[40] Tomilov S, Hoffmann M, Heidrich J et al. High-power Ho: YAG thin-disk laser and first SESAM modelocking[C], AW5A.2(2020).
[41] Saraceno C J, Emaury F, Heckl O H et al. 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment[J]. Optics Express, 20, 23535-23541(2012).
[42] Bauer D, Zawischa I, Sutter D H et al. Mode-locked Yb: YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion[J]. Optics Express, 20, 9698-9704(2012).
[43] Wentsch K S, Zheng L H, Xu J et al. Passively mode-locked Yb3+: Sc2SiO5 thin-disk laser[J]. Optics Letters, 37, 4750-4753(2012).
[44] Ricaud S, Jaffres A, Wentsch K et al. Femtosecond Yb∶CaGdAlO4 thin-disk oscillator[J]. Optics Letters, 37, 3984-3987(2012).
[45] Greborio A, Guandalini A, der Au J A. Sub-100 fs pulses with 12.5-W from Yb: CALGO based oscillators[J]. Proceedings of SPIE, 8235, 823511(2012).
[46] Graumann I J, Diebold A, Emaury F et al. Peak-power scaling of femtosecond SESAM-modelocked Yb∶Lu2O3 thin-disk lasers[C](2017).
[47] Meyer F, Hekmat N, Mansourzadeh S et al. Optical rectification of a 100 W average power mode-locked thin-disk oscillator[J]. Optics Letters, 43, 5909-5912(2018).
[48] Beirow F, Eckerle M, Dannecker B et al. Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level[J]. Optics Express, 26, 4401-4410(2018).
[49] Saltarelli F, Diebold A, Graumann I J et al. Self-phase modulation cancellation in a high-power ultrafast thin-disk laser oscillator[J]. Optica, 5, 1603-1606(2018).
[50] Tomilov S, Hoffmann M, Heidrich J et al. SESAM-modelocked Ho: YAG thin-disk laser with 40.5 W of average power[C], SF2M.3(2021).
[51] Tomilov S, Wang Y C, Hoffmann M et al. 50-W average power Ho∶YAG SESAM-modelocked thin-disk oscillator at 2.1 µm[J]. Optics Express, 30, 27662-27673(2022).
[52] Lorenser D, Unold H J, Maas D J H C et al. Towards wafer-scale integration of high repetition rate passively mode-locked surface-emitting semiconductor lasers[J]. Applied Physics B, 79, 927-932(2004).
[53] Garnache A, Hoogland S, Tropper A C et al. Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power[J]. Applied Physics Letters, 80, 3892-3894(2002).
[54] Lorenser D, Maas D J H C, Unold H J et al. 50-GHz passively mode-locked surface-emitting semiconductor laser with 100-mW average output power[J]. IEEE Journal of Quantum Electronics, 42, 838-847(2006).
[55] Hoffmann M, Barbarin Y, Maas D J H C et al. Modelocked quantum dot vertical external cavity surface emitting laser[J]. Applied Physics B, 93, 733-736(2008).
[56] Klopp P, Griebner U, Zorn M et al. Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser[J]. Applied Physics Letters, 98, 071103(2011).
[57] Hoffmann M, Sieber O D, Wittwer V J et al. Femtosecond high-power quantum dot vertical external cavity surface emitting laser[J]. Optics Express, 19, 8108-8116(2011).
[58] Scheller M, Wang T L, Kunert B et al. Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power[J]. Electronics Letters, 48, 588-589(2012).
[59] Wilcox K G, Tropper A C, Beere H E et al. 4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation[J]. Optics Express, 21, 1599-1605(2013).
[60] Waldburger D, Link S M, Alfieri C G E et al. High-power 100-fs SESAM-modelocked VECSEL[C], ATu1A.8(2016).
[61] Mangold M, Wittwer V J, Zaugg C A et al. Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL)[J]. Optics Express, 21, 24904-24911(2013).
[62] Mangold M, Zaugg C A, Link S M et al. Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser[J]. Optics Express, 22, 6099-6107(2014).
[63] Mangold M, Golling M, Gini E et al. Sub-300-femtosecond operation from a MIXSEL[J]. Optics Express, 23, 22043-22059(2015).
[64] Alfieri C G E, Waldburger D, Nürnberg J et al. Sub-150-fs pulses from an optically pumped broadband modelocked integrated external-cavity surface emitting laser[J]. Optics Letters, 44, 25-28(2018).
[65] Alfieri C G E, Waldburger D, Link S M et al. Optical efficiency and gain dynamics of modelocked semiconductor disk lasers[J]. Optics Express, 25, 6402-6420(2017).
[66] Laurain A, Marah D, Rockmore R et al. Colliding pulse mode locking of vertical-external-cavity surface-emitting laser[J]. Optica, 3, 781-784(2016).
[67] Laurain A, Rockmore R, Chan H T et al. Pulse interactions in a colliding pulse mode-locked vertical external cavity surface emitting laser[J]. Journal of the Optical Society of America B, 34, 329-337(2017).
[68] Laurain A, Kilen I, Hader J et al. Modeling and experimental realization of modelocked VECSEL producing high power sub-100 fs pulses[J]. Applied Physics Letters, 113, 121113(2018).
[69] McInerney J G, Mooradian A, Lewis A et al. High-power surface emitting semiconductor laser with extended vertical compound cavity[J]. Electronics Letters, 39, 523-525(2003).
[70] Jasim K, Zhang Q A, Nurmikko A V et al. Passively modelocked vertical extended cavity surface emitting diode laser[J]. Electronics Letters, 39, 373-375(2003).
[71] Pallmann W P, Zaugg C A, Mangold M et al. Gain characterization and passive modelocking of electrically pumped VECSELs[J]. Optics Express, 20, 24791-24802(2012).
[72] Pallmann W P, Zaugg C A, Mangold M et al. Ultrafast electrically pumped VECSELs[J]. IEEE Photonics Journal, 5, 1501207(2013).
[73] Alhazime A, Butkus M, Hamilton C J et al. 216 MHz repetition rate passively mode-locked electrically-pumped VECSEL[J]. Proceedings of SPIE, 8966, 89660K(2014).
[74] Zaugg C A, Gronenborn S, Moench H et al. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser[J]. Applied Physics Letters, 104, 121115(2014).
[75] Chichkov N B, Yadav A, Munshi T et al. Pulse dynamics in SESAM-free electrically-pumped VECSEL[C](2019).
[76] Kahle H, Mateo C M N, Brauch U et al. Semiconductor membrane external-cavity surface-emitting laser (MECSEL)[J]. Optica, 3, 1506-1512(2016).
[77] Ćutuk A, Grossmann M, Jetter M et al. Membrane saturable absorber mirror (MESAM) in a red-emitting VECSEL for the generation of stable ultrashort pulses[J]. Optics Express, 31, 6796-6804(2023).
[78] Telle H R, Steinmeyer G, Dunlop A E et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation[J]. Applied Physics B, 69, 327-332(1999).
[79] Steinmetz T, Wilken T, Araujo-Hauck C et al. Laser frequency combs for astronomical observations[J]. Science, 321, 1335-1337(2008).
[80] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 416, 233-237(2002).
[81] Coddington I, Swann W, Newbury N. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs[J]. Physical Review Letters, 100, 013902(2008).
[82] Vazquez-Zuniga L A, Jeong Y. Wavelength-tunable, passively mode-locked erbium-doped fiber master-oscillator incorporating a semiconductor saturable absorber mirror[J]. Journal of the Optical Society of Korea, 17, 117-129(2013).
[83] Okhotnikov O G, Grudinin A B, Pessa M. Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications[J]. New Journal of Physics, 6, 177(2004).
[84] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 27, B63-B92(2010).
[85] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).
[86] Kalaycıoğlu H, Elahi P, Akçaalan Ö et al. High-repetition-rate ultrafast fiber lasers for material processing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 8800312(2018).
[87] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 7, 868-874(2013).
[88] Rusu M, Karirinne S P, Guina M et al. Femtosecond neodymium-doped fiber laser operating in the 894- to 909-nm spectral range[J]. IEEE Photonics Technology Letters, 16, 1029-1031(2004).
[89] Price J H V, Lefort L, Richardson D J et al. A practical, low-noise, stretched-pulse Yb3+-doped fiber laser[C], 291-293(2002).
[90] Rutz A, Liverini V, Grange R et al. Parameter tunable GaInNAs saturable absorbers for mode locking of solid-state lasers[J]. Journal of Crystal Growth, 301/302, 570-574(2007).
[91] Kivisto S, Puustinen J, Guina M et al. Tunable modelocked bismuth-doped soliton fibre laser[J]. Electronics Letters, 44, 1456-1458(2008).
[92] de Souza E A, Soccolich C E, Pleibel W et al. Saturable absorber modelocked polarisation maintaining erbium-doped fibre laser[J]. Electronics Letters, 29, 447-449(1993).
[93] Jiang M, Sucha G, Fermann M E et al. Nonlinearly limited saturable-absorber mode locking of an erbium fiber laser[J]. Optics Letters, 24, 1074-1076(1999).
[94] Sharp R C, Spock D E, Pan N et al. 190-fs passively mode-locked thulium fiber laser with a low threshold[J]. Optics Letters, 21, 881-883(1996).
[95] Gumenyuk R, Vartiainen I, Tuovinen H et al. Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser[J]. Optics Letters, 36, 609-611(2011).
[96] Ober M H, Keiler U, Chiu T H et al. Self-starting diode-pumped femtosecond Nd fiber laser[J]. Optics Letters, 18, 1532-1534(1993).
[97] Herda R, Okhotnikov O G. Dispersion compensation-free fiber laser mode-locked and stabilized by a high-contrast saturable absorber mirror[J]. IEEE Journal of Quantum Electronics, 40, 893-899(2004).
[98] Herda R, Okhotnikov O G, Rafailov E U et al. Semiconductor quantum-dot saturable absorber mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 18, 157-159(2006).
[99] Suomalainen S, Guina M, Hakulinen T et al. 1 μm saturable absorber with recovery time reduced by lattice mismatch[J]. Applied Physics Letters, 89, 071112(2006).
[100] Kim M J, Kim H S, Kim N S et al. Investigation of InGaAs quantum-well parameters of a semiconductor saturable absorber mirror used for mode locking of a Yb-doped fiber laser[J]. Journal of the Korean Physical Society, 63, 1919-1924(2013).
[101] Lin N, Zhong L, Li H M et al. Strain-compensated multi-quantum well structure semiconductor saturable absorption mirror[J]. Chinese Journal of Lasers, 49, 1101002(2022).
[102] Tian X L, Tang M, Shum P P et al. High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser[J]. Optics Letters, 34, 1432-1434(2009).
[103] Liu J, Xu J, Wang P. High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers[J]. IEEE Photonics Technology Letters, 24, 539-541(2012).
[104] Hirooka T, Tokuhira K, Yoshida M et al. 440 fs, 9.2 GHz regeneratively mode-locked erbium fiber laser with a combination of higher-order solitons and a SESAM saturable absorber[J]. Optics Express, 24, 24255-24264(2016).
[105] Mashiko Y, Fujita E, Tokurakawa M. Tunable noise-like pulse generation in mode-locked Tm fiber laser with a SESAM[J]. Optics Express, 24, 26515-26520(2016).
[106] Hekmat M J, Gholami A, Omoomi M et al. Ultra-short pulse generation in a linear femtosecond fiber laser using a Faraday rotator mirror and semiconductor saturable absorber mirror[J]. Laser Physics Letters, 15, 025101(2018).
[107] Gao X B, Zhao Z G, Cong Z H et al. Stable 5-GHz fundamental repetition rate passively SESAM mode-locked Er-doped silica fiber lasers[J]. Optics Express, 29, 9021-9029(2021).
Get Citation
Copy Citation Text
Ting Huang, Nan Lin, Qiuyue Zhang, Tianjiang He, Cong Xiong, Li Zhong, Suping Liu, Xiaoyu Ma. Progress in Semiconductor Saturable Absorption Mirror Mode-Locked Laser[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0900008
Category: Reviews
Received: May. 18, 2023
Accepted: Jul. 24, 2023
Published Online: Apr. 29, 2024
The Author Email: Nan Lin (linnan@semi.ac.cn)
CSTR:32186.14.LOP231330