Laser & Optoelectronics Progress, Volume. 62, Issue 2, 0212008(2025)

Strong Interference Target Detection on the Sea Surface Based on Feature Augmentation

Xiang Long*, Huajie Chen, Haoyu Wu, and Di Yu
Author Affiliations
  • School of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang , China
  • show less
    Figures & Tables(15)
    Structure of YOLOv8 network
    Overall structure of TFF module
    Structure of TS-YOLOv8 network
    Partial images in datasets
    Variation trend of mAP50. (a) On the AFO dataset; (b) on the SeaDronesSee dataset
    Comparison of detection results and heatmaps on the AFO test set by baseline model and proposed model. (a) Input images; (b)‒(c) detection results; (d)‒(e) heatmaps
    Comparison of detection results and heatmaps on the SeaDronesSee test set by baseline model and proposed model. (a) Input images; (b)‒(c) detection results; (d)‒(e) heatmaps
    • Table 1. Configuration and parameters setting for experiment

      View table

      Table 1. Configuration and parameters setting for experiment

      ParameterConfiguration
      Python version3.11
      PyTorch version2.0.0
      CUDA version11.7
      Learning rate0.01
      OptimizerStochastic gradient descent (SGD)
      Batch size16
      Epoch100
      Momentum0.937
      Weight decay5×10-4
    • Table 2. Overall performance of different algorithms on the AFO dataset

      View table

      Table 2. Overall performance of different algorithms on the AFO dataset

      AlgorithmParameters /106GFLOPsP /%R /%mAP50 /%mAP95 /%FPS /(frame·s-1
      Faster RCNN136.79369.8442.9647.9741.0117.3917
      SSD24.2861.2572.2619.9644.1022.2639
      YOLOv361.5565.6383.7046.1253.9920.6935
      YOLOv463.9759.9968.2820.8235.7913.8062
      YOLOv546.17108.3194.0151.0157.8331.6973
      YOLOX54.15155.6994.3175.2676.2646.1069
      YOLOv737.22105.2087.4076.7684.8844.8081
      RetinaNet36.43146.9177.6928.0635.2419.3671
      CenterNet32.6770.2290.8952.0261.7128.8982
      RT-DETR42.31136.7489.4583.7988.0947.68108
      YOLOv811.6428.4390.184.6989.5453.67114
      TS-YOLOv812.1729.0694.5491.5695.1461.05110
    • Table 3. AP of each category in the AFO dataset detected by different algorithms

      View table

      Table 3. AP of each category in the AFO dataset detected by different algorithms

      AlgorithmAP50mAP50
      HumanBoardBoatBuoySailboatKayak
      Faster RCNN19.2669.3245.7834.0177.6941.01
      SSD22.1287.8331.8310.0634.1378.6344.10
      YOLOv362.1187.9230.3430.0831.1182.4053.99
      YOLOv432.4978.5412.9028.7062.1335.79
      YOLOv582.0497.9046.5316.6515.8088.0557.83
      YOLOX91.4398.8858.1086.2034.6988.2376.26
      YOLOv782.7298.7268.4079.3480.8899.2484.88
      RetinaNet4.2974.3637.7233.7961.2635.24
      CenterNet65.5482.3855.0245.8533.5687.9361.71
      RT-DETR84.7898.2677.5184.1884.9298.7988.07
      YOLOv882.7598.1980.6488.1887.9299.5489.54
      TS-YOLOv889.8299.1491.5494.4896.2899.6095.14
    • Table 4. Comparison of different attention mechanisms

      View table

      Table 4. Comparison of different attention mechanisms

      ModelParameters /106GFLOPsP /%R /%mAP50 /%mAP95 /%
      YOLOv811.6428.4390.1084.6989.5453.67
      YOLOv8+EMA11.6428.4091.0785.7989.7553.69
      YOLOv8+SimAM11.6428.4391.2985.3090.0655.01
      YOLOv8+CA11.7528.9190.9585.9090.1854.92
      YOLOv8+GAM11.7128.7790.1084.9789.6653.70
      YOLOv8+CBAM11.6428.5392.1086.3691.0955.15
      YOLOv8+SA11.6428.4391.9187.0291.4555.74
    • Table 5. Overall performance of each ablation algorithm on the AFO dataset

      View table

      Table 5. Overall performance of each ablation algorithm on the AFO dataset

      YOLOv8TFFSAParameters /106GFLOPsP /%R /%mAP50 /%mAP95 /%FPS /(frame·s-1
      11.6428.4390.1084.6989.5453.67114
      12.1729.0692.3588.6193.4659.79112
      11.6428.4391.9187.0291.4555.74112
      12.1729.0694.5491.5695.1461.05110
    • Table 6. AP of each category in AFO dataset detected by each ablation algorithm

      View table

      Table 6. AP of each category in AFO dataset detected by each ablation algorithm

      YOLOv8TFFSAAP50mAP50
      HumanBoardBoatBuoySailboatKayak
      82.7599.1980.6478.1890.9299.5489.54
      88.2799.2992.5286.6094.4999.5693.46
      87.0998.4887.2784.3591.9899.5391.45
      89.8299.1491.5494.4896.2899.6095.14
    • Table 7. Overall performance of each ablation algorithm on the SeaDronesSee dataset

      View table

      Table 7. Overall performance of each ablation algorithm on the SeaDronesSee dataset

      YOLOv8TFFSAParameters /106GFLOPsP /%R /%mAP50 /%mAP95 /%FPS /(frame·s-1
      11.6428.4388.4282.8286.8757.61110
      12.1729.0690.3786.1490.0961.91107
      11.6428.4388.9385.7588.7159.47108
      12.1729.0691.6687.5991.3463.53106
    • Table 8. AP of each category in SeaDronesSee dataset detected by each ablation algorithm

      View table

      Table 8. AP of each category in SeaDronesSee dataset detected by each ablation algorithm

      YOLOv8TFFSAAP50mAP50
      SwimmerBoatJetskiLife jacketBuoy
      80.1592.6390.7681.0189.8086.87
      85.7594.1392.9385.0892.5690.09
      83.9993.4991.8683.0591.1688.71
      87.0495.4194.6086.3893.2791.34
    Tools

    Get Citation

    Copy Citation Text

    Xiang Long, Huajie Chen, Haoyu Wu, Di Yu. Strong Interference Target Detection on the Sea Surface Based on Feature Augmentation[J]. Laser & Optoelectronics Progress, 2025, 62(2): 0212008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Apr. 23, 2024

    Accepted: Jun. 11, 2024

    Published Online: Dec. 17, 2024

    The Author Email:

    DOI:10.3788/LOP241156

    CSTR:32186.14.LOP241156

    Topics