Journal of Infrared and Millimeter Waves, Volume. 43, Issue 4, 503(2024)

The research progress of millimeter-wave power applications (invited)

Dun LU1, Wen-Jie FU1、*, Glyavin MIKHAIL2, Xiang-Wei TANG3, Min HU1、**, and Sheng-Gang LIU1
Author Affiliations
  • 1Terahertz Science and Technology Key Laboratory of Sichuan Province,School of Electronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China
  • 2Institute of Applied Physics of Russian Academy of Sciences,Nizhny Novgorod603950,Russia
  • 3Guangdong Midea Kitchen Appliance Manufacturing Co.,Ltd. Innovation Center,Foshan 528311,China
  • show less
    References(100)

    [1] Osepchuk, J M. Microwave power applications[J]. IEEE Transactions on Microwave Theory and Techniques, 50, 975-985(2002).

    [2] Thostenson E T, Chou T W. Microwave processing: fundamentals and applications[J]. Composites Part A Applied Science & Manufacturing, 30, 1055-1071(1999).

    [3] Brosnan K H, Messing G L, Agrawal D K. Microwave sintering of alumina at 2.45 GHz[C](2003).

    [4] Liu Yanjing, He Jiawei, Zhang Nan et al. Advances of microwave plasma-enhanced chemical vapor deposition in fabrication of carbon nanotubes: a review[J]. Journal of Materials Science, 56, 12559-12583(2021).

    [5] Renaux M, Méresse D, Pellé J et al. Mechanical modelling of microwave sintering and experimental validation on an alumina powder[J]. Journal of the European Ceramic Society, 41, 6617-6625(2021).

    [6] Jones M I, Valecillos M, Hirao K et al. Densification Behavior in Microwave-Sintered Silicon Nitride at 28 GHz[J]. Journal of the American Ceramic Society, 84, 2424-2426(2001).

    [7] Egorov S V, Eremeev A G, Kholoptsev V V et al. Rapid microwave sintering of zinc oxide-based varistor ceramics[J]. Journal of the European Ceramic Society, 41, 6508-6515(2021).

    [8] Sintsov S, Vodopyanov A, Mansfeld D. Measurement of electron temperature in a non-equilibrium discharge of atmospheric pressure supported by focused microwave radiation from a 24 GHz gyrotron[J]. AIP Advances, 9, 105009(2019).

    [9] Mansfeld D, Sintsov S, Chekmarev N et al. Conversion of carbon dioxide in microwave plasma torch sustained by gyrotron radiation at frequency of 24 GHz at atmospheric pressure[J]. Journal of CO2 Utilization, 40, 101197(2020).

    [10] Thielens A, Bell D, Mortimore D B et al. Exposure of Insects to Radio-Frequency Electromagnetic Fields from 2 to 120 GHz[J]. Scientific Reports, 8, 3924(2018).

    [11] Glyavin M Y, Idehara T, Sabchevski S P. Development of THz Gyrotrons at IAP RAS and FIR UF and Their Applications in Physical Research and High-Power THz Technologies[J]. IEEE Transactions on Terahertz Science and Technology, 5, 788-797(2015).

    [12] YANG Nan, DU Hai-Wei. Diagnosis plasma density and collisions by terahertz time-domain spectroscopy[J]. J. Infrared Millim. Waves.

    [13] Glyavin M, Sabchevski S, Idehara T et al. Gyrotron-Based Technological Systems for Material Processing-Current Status and Prospects[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 41, 1022-1037(2020).

    [14] Gold S H, Nusinovich G S. Review of high-power microwave source research[J]. Review of Scientific Instruments, 68, 3945-3974(1997).

    [15] Idehara T, Agusu L, Ogawa I et al. Development of medium power sub-THz CW gyrotrons for high power THz spectroscopy[C](2009).

    [16] Griffin R G, Swager T M, Temkin R J. High frequency dynamic nuclear polarization: New directions for the 21st century[J]. Journal of Magnetic Resonance, 306, 128-133(2019).

    [17] Jones M I, Valecillos M, Hirao K et al. Densification Behavior in Microwave-Sintered Silicon Nitride at 28 GHz[J]. Journal of the American Ceramic Society, 84, 2424-2426(2001).

    [18] Link G, Feher L, Thumm M et al. Sintering of advanced ceramics using a 30-GHz, 10-kW, CW industrial gyrotron[J]. IEEE Transactions on Plasma Science, 27, 547-554(1999).

    [19] Kariya T, Minami R, Imai T et al. Development of High Power Gyrotrons for Advanced Fusion Devices[J]. Nuclear Fusion, 59, 10(2019).

    [20] Thumm M K A, Denisov G G, Sakamoto K et al. High-power gyrotrons for electron cyclotron heating and current drive[J]. Nuclear Fusion, 59(2019).

    [21] Thumm M. State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 41, 1-140(2020).

    [22] ZHANG Shan, XUE Qian-Zhong, LIU Gao-Feng et al. Beam-wave interaction analysis of a megawatt coaxial cavity gyrotron for controlled thermonuclear fusion[J]. J. Infrared Millim. Waves, 38, 613-620(2019).

    [23] MA Guo-Wu, HU Lin-Lin, ZHUO Ting-Ting et al. Design of a TE34,10 mode cylindrical cavity for MW level gyrotron[J]. J. Infrared Millim. Waves, 38, 15-20(2019).

    [24] MA Guo-Wu, HU Lin-Lin, ZHUO Ting-Ting et al. Development and test of 140GHz / 50KW Gyrotron[J]. J. Infrared Millim. Waves, 40, 189-197(2021).

    [25] CHEN Pu, ZENG Xu, ZHANG Yi-Chi et al. Design of 170 GHz TE25,10 mode quasi-optical mode converter for MW-level gyrotrons[J]. J. Infrared Millim. Waves, 42, 350-355(2023).

    [26] Korsholm S B, Chambon A, Gonçalves B et al. ITER collective Thomson scattering—Preparing to diagnose fusion-born alpha particles[J]. Review of Scientific Instruments, 93, 103539(2022).

    [27] Meo F, Stejner M, Salewski M et al. First results and analysis of collective Thomson scattering (CTS) fast ion distribution measurements on ASDEX Upgrade[J]. Journal of physics. Conference series, 227, 12010(2010).

    [28] Kimrey H D, Janney M A, Becher P F. Techniques for ceramic sintering using microwave energy[C](1987).

    [29] Hirota M, Valecillos M C, Brito M E et al. Grain growth in millimeter wave sintered silicon nitride ceramics[J]. Journal of the European Ceramic Society, 24, 3337-3343(2004).

    [30] Egorov S V, Eremeev A G, Kholoptsev V V et al. Additive Manufacturing of Ceramic Products Based on Millimeter-Wave Heating[J]. IOP conference series. Materials Science and Engineering, 678, 12022(2017).

    [31] Birnboim A, Gershon D, Calame J et al. Comparative study of microwave sintering of zinc oxide at 2.45, 30, and 83 GHz[J]. Journal of the American Ceramic Society, 81, 1493-1501(1998).

    [32] Link G, Feher L, Thumm M et al. Sintering of advanced ceramics using a 30-GHz, 10-kW, CW industrial gyrotron[J]. IEEE Transactions on Plasma Science, 27, 547-554(1999).

    [33] Kikunaga T, Asano H, Yasojima Y et al. A 28 GHz gyrotron with a permanent magnet system[J]. International Journal of Electronics, 79, 655-663(1995).

    [34] Bykov Y V, Eremeev A G, Glyavin M Y et al. Millimeter-Wave Gyrotron Research System. I. Description of the Facility[J]. Radiophysics and Quantum Electronics, 61, 752-762(2019).

    [35] Bykov Y V, Egorov S V, Eremeev A G et al. Millimeter-Wave Gyrotron System for Research and Application Development. Part 2. High-Temperature Processes in Polycrystalline Dielectric Materials[J]. Radiophysics and Quantum Electronics, 61, 787-796(2019).

    [36] Mitsudo S, Hoshizuki H, Matsuura K et al. High power millimeter and submillimeter wave material processing. Infrared and Millimeter Waves(2004).

    [37] Samsonov S V, Denisov G G, Bratman V L et al. Frequency-Tunable CW Gyro-BWO with a Helically Rippled Operating Waveguide[J]. IEEE Transactions on Plasma Science, 32, 884-889(2004).

    [38] Denisov G, Bykov Y, Eremeev A et al. High Efficient Gyrotron-Based Systems for Materials Processing[C](2007).

    [39] Mitsudo S, Hoshizuki H, Idehara T et al. Development of material processing system by using a 300 GHz CW gyrotron[J]. Journal of Physics: Conference Series, 51, 549-552(2006).

    [40] Vikharev A L, Gorbachev A M, Kozlov A V et al. Microcrystalline diamond growth in presence of argon in millimeter-wave plasma-assisted CVD reactor[J]. Diamond and Related Materials, 17, 1055-1061(2008).

    [41] Vodopyanov A V, Golubev S V, Mansfeld D A et al. Experimental investigations of silicon tetrafluoride decomposition in ECR discharge plasma[J]. Review of Scientific Instruments, 82, 63503(2011).

    [42] Sintsov S, Vodopyanov A, Mansfeld D. Measurement of electron temperature in a non-equilibrium discharge of atmospheric pressure supported by focused microwave radiation from a 24 GHz gyrotron[J]. AIP Advances, 9, 105009(2019).

    [43] Cook A, Shapiro M, Temkin R. Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz[J]. Applied Physics Letters, 97, 11504(2010).

    [44] Sidorov A V, Razin S V, Tsvetkov A I et al. Gas breakdown by a focused beam of CW THz radiation[C](2017).

    [45] Sintsov S, Tabata K, Mansfeld D et al. Optical emission spectroscopy of non-equilibrium microwave plasma torch sustained by focused radiation of gyrotron at 24 GHz[J]. Journal of Physics D-Applied Physics, 53, 305203(2020).

    [46] Mansfeld D, Sintsov S, Chekmarev N et al. Conversion of carbon dioxide in microwave plasma torch sustained by gyrotron radiation at frequency of 24 GHz at atmospheric pressure[J]. Journal of CO2 Utilization, 40, 101197(2020).

    [47] Nanni E A, Barnes A B, Griffin R G et al. THz Dynamic Nuclear Polarization NMR[J]. IEEE Transactions on Terahertz Science and Technology, 1, 145-163(2011).

    [48] Rankin A G M, Trébosc J, Pourpoint F et al. Recent developments in MAS DNP-NMR of materials[J]. Solid State Nuclear Magnetic Resonance, 101, 116-143(2019).

    [49] Lock H, Wind R A, Maciel G E et al. A study of 13C-enriched chemical vapor deposited diamond film by means of 13C nuclear magnetic resonance, electron paramagnetic resonance, and dynamic nuclear polarization[J]. The Journal of Chemical Physics, 99, 3363-3373(1993).

    [50] Lesage A, Lelli M, Gajan D et al. Surface Enhanced NMR Spectroscopy by Dynamic Nuclear Polarization[J]. Journal of the American Chemical Society, 132, 15459-15461(2010).

    [51] Takahashi H, Ishikawa Y, Okamoto T et al. Force detection of high-frequency electron spin resonance near room temperature using high-power millimeter-wave source gyrotron[J]. Applied Physics Letters, 118, 22407(2021).

    [52] Idehara T, Sabchevski S P. Development and Applications of High—Frequency Gyrotrons in FIR FU Covering the sub-THz to THz Range[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 33, 667-694(2012).

    [53] Temkin R J. Development of terahertz gyrotrons for spectroscopy at MIT[J]. Terahertz Science and Technology, 7, 1-9(2014).

    [54] Nowak K. The gyrotron for DNP-NMR spectroscopy: A review[J]. Bulletin of the Polish Academy of Sciences. Technical sciences, 70, e140354(2022).

    [55] CHANG Shao-Jie, WU Zhen-Hua, HUANG Jie et al. The research progress of vacuum electron device in terahertz band[J]. J. Infrared Millim. Waves, 41, 85-102(2022).

    [56] GUAN Xiaotong, FU Wenjie, LU Dun et al. Experiment of a High-Power Sub-THz Gyrotron Operating in High-Order Axial Modes[J]. IEEE Transactions on Electron Devices, 66, 2752-2757(2019).

    [57] SONG Tong, QI Xu, YAN Zheng et al. Experimental Investigations on a 500GHz Continuously Frequency-Tunable Gyrotron[J]. IEEE Electron Device Letters, 42, 1232-1235(2021).

    [58] Blank M, Borchard P, Cauffman S et al. Demonstration of a 593 GHz gyrotron for DNP[C], 1-2(2018).

    [59] Idehara T, Sabchevski S P. Development and Application of Gyrotrons at FIR UF[J]. IEEE Transactions on Plasma Science, 46, 2452-2459(2018).

    [60] Idehara T, Kosuga K, Agusu L et al. Continuously Frequency Tunable High Power Sub-THz Radiation Source—Gyrotron FU CW VI for 600 MHz DNP-NMR Spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 31, 775-790(2010).

    [61] Idehara T, Kosuga K, Agusu L et al. Gyrotron FU CW VII for 300MHz and 600MHz DNP-NMR Spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 31, 763-774(2010).

    [62] Kuleshov A, Ishikawa Y, Tatematsu Y et al. Low-Voltage Operation of the Double-Beam Gyrotron at 400 GHz[J]. IEEE Transactions on Electron Devices, 67, 673-676(2020).

    [63] CAO Yi-Chao, CHEN Qiang, ZHANG Chen et al. Investigations on an improved transmission line for THz DNP-NMR spectroscopy[J]. J. Infrared Millim. Waves, 38, 690-694(2019).

    [64] Becerra L R, Gerfen G J, Temkin R J et al. Dynamic nuclear polarization with a cyclotron resonance maser at 5 T[J]. Phys Rev Lett., 71, 3561-3564(1993).

    [65] Bajaj V S, Farrar C T, Hornstein M K et al. Dynamic nuclear polarization at 9T using a novel 250GHz gyrotron microwave source[J]. Journal of Magnetic Resonance, 160, 85-90(2003).

    [66] Torrezan A C, Shapiro M A, Sirigiri J R et al. Operation of a Continuously Frequency-Tunable Second-Harmonic CW 330-GHz Gyrotron for Dynamic Nuclear Polarization[J]. IEEE Transactions on Electron Devices, 58, 2777-2783(2011).

    [67] Hornstein M K, Bajaj V S, Griffin R G et al. Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator[J]. IEEE Transactions on Plasma Science, 34, 524-533(2006).

    [68] Torrezan A C, Han S, Mastovsky I et al. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance[J]. IEEE Transactions on Plasma Science, 38, 1150-1159(2010).

    [69] Hornstein M K, Bajaj V S, Griffin R G et al. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz[J]. IEEE Transactions on Plasma Science, 35, 27-30(2007).

    [70] CHEN Shu-Yuan, RUAN Cun-Jun, WANG Yong et al. Interaction system of W-band sheet beam EIK[J]. J. Infrared Millim. Waves, 34, 230-235(2015).

    [71] XU Che, MENG Lin, YIN Yong et al. Analysis of oscillation-starting characteristics in millimeter wave extended interaction oscillators[J]. J. Infrared Millim. Waves, 40, 627-633(2021).

    [72] LEI Yan-Ming, YAN Yang, FU Wen-Jie. 8 mm radial extended interaction oscillator[J]. J. Infrared Millim. Waves, 34, 493-496(2015).

    [73] Kemp T F, Dannatt H R W, Barrow N S et al. Dynamic Nuclear Polarization enhanced NMR at 187 GHz/284 MHz using an Extended Interaction Klystron amplifier[J]. Journal of Magnetic Resonance, 265, 77-82(2016).

    [74] Neelakanta P S, Sharma B. Conceiving THz Endometrial Ablation: Feasibility, Requirements and Technical Challenges[J]. IEEE Transactions on Terahertz Science and Technology, 3, 402-408(2013).

    [75] Miyoshi N, Idehara T, Khutoryan E et al. Combined Hyperthermia and Photodynamic Therapy Using a Sub-THz Gyrotron as a Radiation Source[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 37, 805-814(2016).

    [76] PAN Yuan-Yuan, WANG Li-Na, LIU Jian-Wei et al. Design and experiments of 94 GHz Gyrotron for non-lethal biological effects of millimeter wave radiation[J]. J. Infrared Millim. Waves, 39, 163-168(2020).

    [77] LIAO Cheng-hsiang, TSAI Yu-fang, Chiun-cheng KO et al. Study on eliminating Xanthomonas campestris pv. campestris from cabbage seeds by high frequency microwave[C], 1-4(2019).

    [78] Kaczmarczyk L S, Marsay K S, Shevchenko S et al. Corona and polio viruses are sensitive to short pulses of W-band gyrotron radiation[J]. Environmental Chemistry Letters, 19, 3967-3972(2021).

    [79] Kumar N, Singh U, Singh T P et al. A Review on the Applications of High Power, High Frequency Microwave Source: Gyrotron[J]. Journal of Fusion Energy, 30, 257-276(2011).

    [80] Koert P, Cha J T. Millimeter wave technology for space power beaming[J]. IEEE Transactions on Microwave Theory and Techniques, 40, 1251-1258(1992).

    [81] Sei M, Shunsuke M, Kohei S et al. Development of Sub-Terahertz Rectenna Using Gyrotron[C], 129-131(2018).

    [82] Mizojiri S, Takagi K, Shimamura K et al. Demonstration of Sub-Terahertz Coplanar Rectenna using 265 GHz Gyrotron[C], 409-412(2019).

    [83] Etinger A, Pilossof M, Litvak B et al. Characterization of a Schottky Diode Rectenna for Millimeter Wave Power Beaming Using High Power Radiation Sources[J]. Acta physica Polonica A., 131, 1280-1285(2017).

    [84] Woskov P, Michael P. Millimeter-Wave Heating Radiometry and Calorimetry of Granite Rock to Vaporization[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 33, 82-95(2012).

    [85] Liu J, Guo J, Wang L et al. Design and Experimental Research of 45-GHz Quasi-optical Transmission Line for Melting Rock[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 43, 213-224(2022).

    [86] Kantrowitz A. Propulsion to Orbit by Ground-Based Laser[J]. Astronaut. Aeronaut, 10, 34-35(1972).

    [87] Komurasaki K, Tabata K. Development of a Novel Launch System Microwave Rocket Powered by Millimeter-Wave Discharge[J]. International Journal of Aerospace Engineering, 2018, 1-9(2018).

    [88] Glyavin M Y, Denisov G G, Zapevalov V E et al. Terahertz gyrotrons: State of the art and prospects[J]. Journal of Communications Technology & Electronics, 59, 792-797(2014).

    [89] Masafumi F, Kimiya K, Yusuke N et al. Rocket Propulsion Powered Using a Gyrotron[J]. Journal of Energy and Power Engineering, 11, 363-371(2017).

    [90] Fukunari M, Yamaguchi T, Nakamura Y et al. Thrust generation experiments on microwave rocket with a beam concentrator for long distance wireless power feeding[J]. Acta Astronautica, 145, 263-267(2018).

    [91] Saito T, Yamada N, Ikeuti S et al. Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation[J]. Physics of Plasmas, 19, 63106(2012).

    [92] Bandurkin I V, Fokin A P, Glyavin M Y et al. Demonstration of a Selective Oversized Cavity in a Terahertz Second-Harmonic Gyrotron[J]. IEEE Electron Device Letters, 41, 1412-1415(2020).

    [93] Li H, Xie Z, Wang W et al. A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system[J]. IEEE Transactions on Plasma Science, 31, 264-271(2003).

    [94] Proyavin M D, Morozkin M V, Manuilov V N et al. Results of the Study of a New Generation Technological Gyrotron System with High Power and Efficiency[J]. IEEE Electron Device Letters, 44, 148-151(2023).

    [95] Lu D, Fu W, Han M et al. Design and Preliminary Experiment of Room-Temperature Bitter Magnet for Compact Gyrotron[J]. IEEE Transactions on Electron Devices, 70, 2719-2724(2023).

    [96] Sun D, Huang Q, Hu L et al. A CW, 94 GHz Second Harmonic Gyrotron with a Continuous Operation Solenoid Cooled by Water[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 42, 1105-1115(2021).

    [97] Pilossof M, Einat M. 95-GHz Gyrotron With Room Temperature DC Solenoid[J]. IEEE Transactions on Electron Devices, 65, 3474-3478(2018).

    [98] Lu D, Fu W, Fedotov A et al. Ultimate transverse power of pulsed low-voltage gyrotron beam[J]. Physics of Plasmas, 29, 93107(2022).

    [99] Bratman V L, Fedotov A E, Kalynov Y K et al. Smooth Wideband Frequency Tuning in Low-Voltage Gyrotron with Cathode-End Power Output[J]. IEEE Transactions on Electron Devices, 64, 5147-5150(2017).

    [100] Glyavin M Y, Zavolskiy N A, Sedov A S et al. Low-voltage gyrotrons[J]. Physics of Plasmas, 20, 33103(2013).

    Tools

    Get Citation

    Copy Citation Text

    Dun LU, Wen-Jie FU, Glyavin MIKHAIL, Xiang-Wei TANG, Min HU, Sheng-Gang LIU. The research progress of millimeter-wave power applications (invited)[J]. Journal of Infrared and Millimeter Waves, 2024, 43(4): 503

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 5, 2023

    Accepted: --

    Published Online: Aug. 27, 2024

    The Author Email: Wen-Jie FU (fuwenjie@uestc.edu.cn), Min HU (hu_m@uestc.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2024.04.010

    Topics