Journal of Infrared and Millimeter Waves, Volume. 43, Issue 4, 503(2024)

The research progress of millimeter-wave power applications (invited)

Dun LU1... Wen-Jie FU1,*, Glyavin MIKHAIL2, Xiang-Wei TANG3, Min HU1,** and Sheng-Gang LIU1 |Show fewer author(s)
Author Affiliations
  • 1Terahertz Science and Technology Key Laboratory of Sichuan Province,School of Electronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China
  • 2Institute of Applied Physics of Russian Academy of Sciences,Nizhny Novgorod603950,Russia
  • 3Guangdong Midea Kitchen Appliance Manufacturing Co.,Ltd. Innovation Center,Foshan 528311,China
  • show less
    References(100)

    [1] J M Osepchuk,. Microwave power applications. IEEE Transactions on Microwave Theory and Techniques, 50, 975-985(2002).

    [2] E T Thostenson, T W Chou. Microwave processing: fundamentals and applications. Composites Part A Applied Science & Manufacturing, 30, 1055-1071(1999).

    [3] K H Brosnan, G L Messing, D K Agrawal. Microwave sintering of alumina at 2.45 GHz(2003).

    [4] Yanjing Liu, Jiawei He, Nan Zhang et al. Advances of microwave plasma-enhanced chemical vapor deposition in fabrication of carbon nanotubes: a review. Journal of Materials Science, 56, 12559-12583(2021).

    [5] M Renaux, D Méresse, J Pellé et al. Mechanical modelling of microwave sintering and experimental validation on an alumina powder. Journal of the European Ceramic Society, 41, 6617-6625(2021).

    [6] M I Jones, M Valecillos, K Hirao et al. Densification Behavior in Microwave-Sintered Silicon Nitride at 28 GHz. Journal of the American Ceramic Society, 84, 2424-2426(2001).

    [7] S V Egorov, A G Eremeev, V V Kholoptsev et al. Rapid microwave sintering of zinc oxide-based varistor ceramics. Journal of the European Ceramic Society, 41, 6508-6515(2021).

    [8] S Sintsov, A Vodopyanov, D Mansfeld. Measurement of electron temperature in a non-equilibrium discharge of atmospheric pressure supported by focused microwave radiation from a 24 GHz gyrotron. AIP Advances, 9, 105009(2019).

    [9] D Mansfeld, S Sintsov, N Chekmarev et al. Conversion of carbon dioxide in microwave plasma torch sustained by gyrotron radiation at frequency of 24 GHz at atmospheric pressure. Journal of CO2 Utilization, 40, 101197(2020).

    [10] A Thielens, D Bell, D B Mortimore et al. Exposure of Insects to Radio-Frequency Electromagnetic Fields from 2 to 120 GHz. Scientific Reports, 8, 3924(2018).

    [11] M Y Glyavin, T Idehara, S P Sabchevski. Development of THz Gyrotrons at IAP RAS and FIR UF and Their Applications in Physical Research and High-Power THz Technologies. IEEE Transactions on Terahertz Science and Technology, 5, 788-797(2015).

    [12] Nan YANG, Hai-Wei DU. Diagnosis plasma density and collisions by terahertz time-domain spectroscopy. J. Infrared Millim. Waves.

    [13] M Glyavin, S Sabchevski, T Idehara et al. Gyrotron-Based Technological Systems for Material Processing-Current Status and Prospects. Journal of Infrared, Millimeter, and Terahertz Waves, 41, 1022-1037(2020).

    [14] S H Gold, G S Nusinovich. Review of high-power microwave source research. Review of Scientific Instruments, 68, 3945-3974(1997).

    [15] T Idehara, L Agusu, I Ogawa et al. Development of medium power sub-THz CW gyrotrons for high power THz spectroscopy(2009).

    [16] R G Griffin, T M Swager, R J Temkin. High frequency dynamic nuclear polarization: New directions for the 21st century. Journal of Magnetic Resonance, 306, 128-133(2019).

    [17] M I Jones, M Valecillos, K Hirao et al. Densification Behavior in Microwave-Sintered Silicon Nitride at 28 GHz. Journal of the American Ceramic Society, 84, 2424-2426(2001).

    [18] G Link, L Feher, M Thumm et al. Sintering of advanced ceramics using a 30-GHz, 10-kW, CW industrial gyrotron. IEEE Transactions on Plasma Science, 27, 547-554(1999).

    [19] T Kariya, R Minami, T Imai et al. Development of High Power Gyrotrons for Advanced Fusion Devices. Nuclear Fusion, 59, 10(2019).

    [20] M K A Thumm, G G Denisov, K Sakamoto et al. High-power gyrotrons for electron cyclotron heating and current drive. Nuclear Fusion, 59(2019).

    [21] M Thumm. State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers. Journal of Infrared, Millimeter, and Terahertz Waves, 41, 1-140(2020).

    [22] Shan ZHANG, Qian-Zhong XUE, Gao-Feng LIU et al. Beam-wave interaction analysis of a megawatt coaxial cavity gyrotron for controlled thermonuclear fusion. J. Infrared Millim. Waves, 38, 613-620(2019).

    [23] Guo-Wu MA, Lin-Lin HU, Ting-Ting ZHUO et al. Design of a TE34,10 mode cylindrical cavity for MW level gyrotron. J. Infrared Millim. Waves, 38, 15-20(2019).

    [24] Guo-Wu MA, Lin-Lin HU, Ting-Ting ZHUO et al. Development and test of 140GHz / 50KW Gyrotron. J. Infrared Millim. Waves, 40, 189-197(2021).

    [25] Pu CHEN, Xu ZENG, Yi-Chi ZHANG et al. Design of 170 GHz TE25,10 mode quasi-optical mode converter for MW-level gyrotrons. J. Infrared Millim. Waves, 42, 350-355(2023).

    [26] S B Korsholm, A Chambon, B Gonçalves et al. ITER collective Thomson scattering—Preparing to diagnose fusion-born alpha particles. Review of Scientific Instruments, 93, 103539(2022).

    [27] F Meo, M Stejner, M Salewski et al. First results and analysis of collective Thomson scattering (CTS) fast ion distribution measurements on ASDEX Upgrade. Journal of physics. Conference series, 227, 12010(2010).

    [28] H D Kimrey, M A Janney, P F Becher. Techniques for ceramic sintering using microwave energy(1987).

    [29] M Hirota, M C Valecillos, M E Brito et al. Grain growth in millimeter wave sintered silicon nitride ceramics. Journal of the European Ceramic Society, 24, 3337-3343(2004).

    [30] S V Egorov, A G Eremeev, V V Kholoptsev et al. Additive Manufacturing of Ceramic Products Based on Millimeter-Wave Heating. IOP conference series. Materials Science and Engineering, 678, 12022(2017).

    [31] A Birnboim, D Gershon, J Calame et al. Comparative study of microwave sintering of zinc oxide at 2.45, 30, and 83 GHz. Journal of the American Ceramic Society, 81, 1493-1501(1998).

    [32] G Link, L Feher, M Thumm et al. Sintering of advanced ceramics using a 30-GHz, 10-kW, CW industrial gyrotron. IEEE Transactions on Plasma Science, 27, 547-554(1999).

    [33] T Kikunaga, H Asano, Y Yasojima et al. A 28 GHz gyrotron with a permanent magnet system. International Journal of Electronics, 79, 655-663(1995).

    [34] Y V Bykov, A G Eremeev, M Y Glyavin et al. Millimeter-Wave Gyrotron Research System. I. Description of the Facility. Radiophysics and Quantum Electronics, 61, 752-762(2019).

    [35] Y V Bykov, S V Egorov, A G Eremeev et al. Millimeter-Wave Gyrotron System for Research and Application Development. Part 2. High-Temperature Processes in Polycrystalline Dielectric Materials. Radiophysics and Quantum Electronics, 61, 787-796(2019).

    [36] S Mitsudo, H Hoshizuki, K Matsuura et al. High power millimeter and submillimeter wave material processing. Infrared and Millimeter Waves(2004).

    [37] S V Samsonov, G G Denisov, V L Bratman et al. Frequency-Tunable CW Gyro-BWO with a Helically Rippled Operating Waveguide. IEEE Transactions on Plasma Science, 32, 884-889(2004).

    [38] G Denisov, Y Bykov, A Eremeev et al. High Efficient Gyrotron-Based Systems for Materials Processing(2007).

    [39] S Mitsudo, H Hoshizuki, T Idehara et al. Development of material processing system by using a 300 GHz CW gyrotron. Journal of Physics: Conference Series, 51, 549-552(2006).

    [40] A L Vikharev, A M Gorbachev, A V Kozlov et al. Microcrystalline diamond growth in presence of argon in millimeter-wave plasma-assisted CVD reactor. Diamond and Related Materials, 17, 1055-1061(2008).

    [41] A V Vodopyanov, S V Golubev, D A Mansfeld et al. Experimental investigations of silicon tetrafluoride decomposition in ECR discharge plasma. Review of Scientific Instruments, 82, 63503(2011).

    [42] S Sintsov, A Vodopyanov, D Mansfeld. Measurement of electron temperature in a non-equilibrium discharge of atmospheric pressure supported by focused microwave radiation from a 24 GHz gyrotron. AIP Advances, 9, 105009(2019).

    [43] A Cook, M Shapiro, R Temkin. Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz. Applied Physics Letters, 97, 11504(2010).

    [44] A V Sidorov, S V Razin, A I Tsvetkov et al. Gas breakdown by a focused beam of CW THz radiation(2017).

    [45] S Sintsov, K Tabata, D Mansfeld et al. Optical emission spectroscopy of non-equilibrium microwave plasma torch sustained by focused radiation of gyrotron at 24 GHz. Journal of Physics D-Applied Physics, 53, 305203(2020).

    [46] D Mansfeld, S Sintsov, N Chekmarev et al. Conversion of carbon dioxide in microwave plasma torch sustained by gyrotron radiation at frequency of 24 GHz at atmospheric pressure. Journal of CO2 Utilization, 40, 101197(2020).

    [47] E A Nanni, A B Barnes, R G Griffin et al. THz Dynamic Nuclear Polarization NMR. IEEE Transactions on Terahertz Science and Technology, 1, 145-163(2011).

    [48] A G M Rankin, J Trébosc, F Pourpoint et al. Recent developments in MAS DNP-NMR of materials. Solid State Nuclear Magnetic Resonance, 101, 116-143(2019).

    [49] H Lock, R A Wind, G E Maciel et al. A study of 13C-enriched chemical vapor deposited diamond film by means of 13C nuclear magnetic resonance, electron paramagnetic resonance, and dynamic nuclear polarization. The Journal of Chemical Physics, 99, 3363-3373(1993).

    [50] A Lesage, M Lelli, D Gajan et al. Surface Enhanced NMR Spectroscopy by Dynamic Nuclear Polarization. Journal of the American Chemical Society, 132, 15459-15461(2010).

    [51] H Takahashi, Y Ishikawa, T Okamoto et al. Force detection of high-frequency electron spin resonance near room temperature using high-power millimeter-wave source gyrotron. Applied Physics Letters, 118, 22407(2021).

    [52] T Idehara, S P Sabchevski. Development and Applications of High—Frequency Gyrotrons in FIR FU Covering the sub-THz to THz Range. Journal of Infrared, Millimeter, and Terahertz Waves, 33, 667-694(2012).

    [53] R J Temkin. Development of terahertz gyrotrons for spectroscopy at MIT. Terahertz Science and Technology, 7, 1-9(2014).

    [54] K Nowak. The gyrotron for DNP-NMR spectroscopy: A review. Bulletin of the Polish Academy of Sciences. Technical sciences, 70, e140354(2022).

    [55] Shao-Jie CHANG, Zhen-Hua WU, Jie HUANG et al. The research progress of vacuum electron device in terahertz band. J. Infrared Millim. Waves, 41, 85-102(2022).

    [56] Xiaotong GUAN, Wenjie FU, Dun LU et al. Experiment of a High-Power Sub-THz Gyrotron Operating in High-Order Axial Modes. IEEE Transactions on Electron Devices, 66, 2752-2757(2019).

    [57] Tong SONG, Xu QI, Zheng YAN et al. Experimental Investigations on a 500GHz Continuously Frequency-Tunable Gyrotron. IEEE Electron Device Letters, 42, 1232-1235(2021).

    [58] M Blank, P Borchard, S Cauffman et al. Demonstration of a 593 GHz gyrotron for DNP, 1-2(2018).

    [59] T Idehara, S P Sabchevski. Development and Application of Gyrotrons at FIR UF. IEEE Transactions on Plasma Science, 46, 2452-2459(2018).

    [60] T Idehara, K Kosuga, L Agusu et al. Continuously Frequency Tunable High Power Sub-THz Radiation Source—Gyrotron FU CW VI for 600 MHz DNP-NMR Spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 31, 775-790(2010).

    [61] T Idehara, K Kosuga, L Agusu et al. Gyrotron FU CW VII for 300MHz and 600MHz DNP-NMR Spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 31, 763-774(2010).

    [62] A Kuleshov, Y Ishikawa, Y Tatematsu et al. Low-Voltage Operation of the Double-Beam Gyrotron at 400 GHz. IEEE Transactions on Electron Devices, 67, 673-676(2020).

    [63] Yi-Chao CAO, Qiang CHEN, Chen ZHANG et al. Investigations on an improved transmission line for THz DNP-NMR spectroscopy. J. Infrared Millim. Waves, 38, 690-694(2019).

    [64] L R Becerra, G J Gerfen, R J Temkin et al. Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. Phys Rev Lett., 71, 3561-3564(1993).

    [65] V S Bajaj, C T Farrar, M K Hornstein et al. Dynamic nuclear polarization at 9T using a novel 250GHz gyrotron microwave source. Journal of Magnetic Resonance, 160, 85-90(2003).

    [66] A C Torrezan, M A Shapiro, J R Sirigiri et al. Operation of a Continuously Frequency-Tunable Second-Harmonic CW 330-GHz Gyrotron for Dynamic Nuclear Polarization. IEEE Transactions on Electron Devices, 58, 2777-2783(2011).

    [67] M K Hornstein, V S Bajaj, R G Griffin et al. Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator. IEEE Transactions on Plasma Science, 34, 524-533(2006).

    [68] A C Torrezan, S Han, I Mastovsky et al. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance. IEEE Transactions on Plasma Science, 38, 1150-1159(2010).

    [69] M K Hornstein, V S Bajaj, R G Griffin et al. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz. IEEE Transactions on Plasma Science, 35, 27-30(2007).

    [70] Shu-Yuan CHEN, Cun-Jun RUAN, Yong WANG et al. Interaction system of W-band sheet beam EIK. J. Infrared Millim. Waves, 34, 230-235(2015).

    [71] Che XU, Lin MENG, Yong YIN et al. Analysis of oscillation-starting characteristics in millimeter wave extended interaction oscillators. J. Infrared Millim. Waves, 40, 627-633(2021).

    [72] Yan-Ming LEI, Yang YAN, Wen-Jie FU. 8 mm radial extended interaction oscillator. J. Infrared Millim. Waves, 34, 493-496(2015).

    [73] T F Kemp, H R W Dannatt, N S Barrow et al. Dynamic Nuclear Polarization enhanced NMR at 187 GHz/284 MHz using an Extended Interaction Klystron amplifier. Journal of Magnetic Resonance, 265, 77-82(2016).

    [74] P S Neelakanta, B Sharma. Conceiving THz Endometrial Ablation: Feasibility, Requirements and Technical Challenges. IEEE Transactions on Terahertz Science and Technology, 3, 402-408(2013).

    [75] N Miyoshi, T Idehara, E Khutoryan et al. Combined Hyperthermia and Photodynamic Therapy Using a Sub-THz Gyrotron as a Radiation Source. Journal of Infrared, Millimeter, and Terahertz Waves, 37, 805-814(2016).

    [76] Yuan-Yuan PAN, Li-Na WANG, Jian-Wei LIU et al. Design and experiments of 94 GHz Gyrotron for non-lethal biological effects of millimeter wave radiation. J. Infrared Millim. Waves, 39, 163-168(2020).

    [77] Cheng-hsiang LIAO, Yu-fang TSAI, KO Chiun-cheng et al. Study on eliminating Xanthomonas campestris pv. campestris from cabbage seeds by high frequency microwave, 1-4(2019).

    [78] L S Kaczmarczyk, K S Marsay, S Shevchenko et al. Corona and polio viruses are sensitive to short pulses of W-band gyrotron radiation. Environmental Chemistry Letters, 19, 3967-3972(2021).

    [79] N Kumar, U Singh, T P Singh et al. A Review on the Applications of High Power, High Frequency Microwave Source: Gyrotron. Journal of Fusion Energy, 30, 257-276(2011).

    [80] P Koert, J T Cha. Millimeter wave technology for space power beaming. IEEE Transactions on Microwave Theory and Techniques, 40, 1251-1258(1992).

    [81] M Sei, M Shunsuke, S Kohei et al. Development of Sub-Terahertz Rectenna Using Gyrotron, 129-131(2018).

    [82] S Mizojiri, K Takagi, K Shimamura et al. Demonstration of Sub-Terahertz Coplanar Rectenna using 265 GHz Gyrotron, 409-412(2019).

    [83] A Etinger, M Pilossof, B Litvak et al. Characterization of a Schottky Diode Rectenna for Millimeter Wave Power Beaming Using High Power Radiation Sources. Acta physica Polonica A., 131, 1280-1285(2017).

    [84] P Woskov, P Michael. Millimeter-Wave Heating Radiometry and Calorimetry of Granite Rock to Vaporization. Journal of Infrared, Millimeter, and Terahertz Waves, 33, 82-95(2012).

    [85] J Liu, J Guo, L Wang et al. Design and Experimental Research of 45-GHz Quasi-optical Transmission Line for Melting Rock. Journal of Infrared, Millimeter, and Terahertz Waves, 43, 213-224(2022).

    [86] A Kantrowitz. Propulsion to Orbit by Ground-Based Laser. Astronaut. Aeronaut, 10, 34-35(1972).

    [87] K Komurasaki, K Tabata. Development of a Novel Launch System Microwave Rocket Powered by Millimeter-Wave Discharge. International Journal of Aerospace Engineering, 2018, 1-9(2018).

    [88] M Y Glyavin, G G Denisov, V E Zapevalov et al. Terahertz gyrotrons: State of the art and prospects. Journal of Communications Technology & Electronics, 59, 792-797(2014).

    [89] F Masafumi, K Kimiya, N Yusuke et al. Rocket Propulsion Powered Using a Gyrotron. Journal of Energy and Power Engineering, 11, 363-371(2017).

    [90] M Fukunari, T Yamaguchi, Y Nakamura et al. Thrust generation experiments on microwave rocket with a beam concentrator for long distance wireless power feeding. Acta Astronautica, 145, 263-267(2018).

    [91] T Saito, N Yamada, S Ikeuti et al. Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation. Physics of Plasmas, 19, 63106(2012).

    [92] I V Bandurkin, A P Fokin, M Y Glyavin et al. Demonstration of a Selective Oversized Cavity in a Terahertz Second-Harmonic Gyrotron. IEEE Electron Device Letters, 41, 1412-1415(2020).

    [93] H Li, Z Xie, W Wang et al. A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system. IEEE Transactions on Plasma Science, 31, 264-271(2003).

    [94] M D Proyavin, M V Morozkin, V N Manuilov et al. Results of the Study of a New Generation Technological Gyrotron System with High Power and Efficiency. IEEE Electron Device Letters, 44, 148-151(2023).

    [95] D Lu, W Fu, M Han et al. Design and Preliminary Experiment of Room-Temperature Bitter Magnet for Compact Gyrotron. IEEE Transactions on Electron Devices, 70, 2719-2724(2023).

    [96] D Sun, Q Huang, L Hu et al. A CW, 94 GHz Second Harmonic Gyrotron with a Continuous Operation Solenoid Cooled by Water. Journal of Infrared, Millimeter, and Terahertz Waves, 42, 1105-1115(2021).

    [97] M Pilossof, M Einat. 95-GHz Gyrotron With Room Temperature DC Solenoid. IEEE Transactions on Electron Devices, 65, 3474-3478(2018).

    [98] D Lu, W Fu, A Fedotov et al. Ultimate transverse power of pulsed low-voltage gyrotron beam. Physics of Plasmas, 29, 93107(2022).

    [99] V L Bratman, A E Fedotov, Y K Kalynov et al. Smooth Wideband Frequency Tuning in Low-Voltage Gyrotron with Cathode-End Power Output. IEEE Transactions on Electron Devices, 64, 5147-5150(2017).

    [100] M Y Glyavin, N A Zavolskiy, A S Sedov et al. Low-voltage gyrotrons. Physics of Plasmas, 20, 33103(2013).

    Tools

    Get Citation

    Copy Citation Text

    Dun LU, Wen-Jie FU, Glyavin MIKHAIL, Xiang-Wei TANG, Min HU, Sheng-Gang LIU. The research progress of millimeter-wave power applications (invited)[J]. Journal of Infrared and Millimeter Waves, 2024, 43(4): 503

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 5, 2023

    Accepted: --

    Published Online: Aug. 27, 2024

    The Author Email: Wen-Jie FU (fuwenjie@uestc.edu.cn), Min HU (hu_m@uestc.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2024.04.010

    Topics