Acta Photonica Sinica, Volume. 53, Issue 5, 0553102(2024)

Research Progress of Large-scale Integrated Optical Microcavities for Sensing(Invited)

Boshu SUN, Chunlei SUN, Renjie TANG, Yiting WANG, and Lan LI*
Author Affiliations
  • School of Engineering,Westlake University,Hangzhou 310030,China
  • show less
    References(103)

    [1] GAO Hongyan, WANG Zhien, YANG Feiyu et al. Graphene-integrated mesh electronics with converged multifunctionality for tracking multimodal excitation-contraction dynamics in cardiac microtissues[J]. Nature Communications, 15, 2321(2024).

    [2] ZHENG Xinting, YANG Zijie, SUTARLIE Laura et al. Battery-free and AI-enabled multiplexed sensor patches for wound monitoring[J]. Science Advances, 9, eadg6670(2023).

    [3] CAI Rong, NGWADOM C, SAXENA R et al. Creation of a point-of-care therapeutics sensor using protein engineering, electrochemical sensing and electronic integration[J]. Nature Communications, 15, 1689(2024).

    [4] GE Rui, YU Qiuhong, ZHOU Feng et al. Dual-modal piezotronic transistor for highly sensitive vertical force sensing and lateral strain sensing[J]. Nature Communications, 14, 6315(2023).

    [5] MAGRUDER L A, FARRELL S L, NEUENSCHWANDER A et al. Monitoring Earth's climate variables with satellite laser altimetry[J]. Nature Reviews Earth & Environment, 5, 120-136(2024).

    [6] GIEßLER M, WERTH Julian, WALTERSBERGER B et al. A wearable sensor and framework for accurate remote monitoring of human motion[J]. Communications Engineering, 3, 20(2024).

    [7] KHUNTE A, SANGHA V, OIKONOMOU E K et al. Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices[J]. NPJ Digit Med, 6, 124(2023).

    [8] YAN Wenzhong, LI Shuguang, MEHTA A et al. Origami-based integration of robots that sense, decide, and respond[J]. Nature Communications, 14, 1553(2023).

    [9] TOSI F, MURA A, COFANO A et al. Salts and organics on Ganymede's surface observed by the JIRAM spectrometer onboard Juno[J]. Nature Astronomy, 8, 82-93(2023).

    [10] HUANG Shuo, RUIZ M R, CASTELL O K et al. High-throughput optical sensing of nucleic acids in a nanopore array[J]. Nature Nanotechnology, 10, 986-991(2015).

    [11] MAITY A, PU H, SUI X et al. Scalable graphene sensor array for real-time toxins monitoring in flowing water[J]. Nature Communications, 14, 4184(2023).

    [12] GONG Chaoyang, YANG Xi, TANG Shuijing et al. Submonolayer biolasers for ultrasensitive biomarker detection[J]. Light: Science & Applications, 12, 292(2023).

    [13] WANG Yijia, ZHANG Chonglei, ZHANG Yuquan et al. Investigation of phase SPR biosensor for efficient targeted drug screening with high sensitivity and stability[J]. Sensors and Actuators B: Chemical, 209, 313-322(2015).

    [14] YUAN Yuan, PENG Yiwei, SORIN W V et al. A 5× 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions[J]. Nature Communications, 15, 918(2024).

    [15] HSU W C, NUJHAT N, KUPP B et al. Sub-volt high-speed silicon MOSCAP microring modulator driven by high-mobility conductive oxide[J]. Nature Communications, 15, 826(2024).

    [16] MAUTHE S, BAUMGARTNER Y, SOUSA M et al. High-speed III-V nanowire photodetector monolithically integrated on Si[J]. Nature Communications, 11, 4565(2020).

    [17] WANG Jingyi, PAN Beibei, WANG Zi et al. Single-pixel p-graded-n junction spectrometers[J]. Nature Communications, 15, 1773(2024).

    [18] SACKMANN E K, FULTON A L, BEEBE D J. The present and future role of microfluidics in biomedical research[J]. Nature, 507, 181-189(2014).

    [19] RYCKEBOER E, BOCKSTAELE R, VANSLEMBROUCK M et al. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip[J]. Biomedical Optics Express, 5, 1636(2014).

    [20] TANG Shuijing, LIU Shuai, YU Xiaochong et al. On‐chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects[J]. Advanced Materials, 30, 1800262(2018).

    [21] JIANG Xuefeng, QAVI A J, HUANG S H et al. Whispering-gallery sensors[J]. Matter, 3, 371-392(2020).

    [22] GAVARTIN E, BRAIVE R, SAGNES I et al. Optomechanical coupling in a two-dimensional photonic crystal defect cavity[J]. Physical Review Letters, 106, 203902(2011).

    [23] GOBAN A, HUNG C L, YU S P et al. Atom-light interactions in photonic crystals[J]. Nature Communications, 5, 3808(2014).

    [24] IQBAL M, GLEESON M A, SPAUGH B et al. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 654-661(2010).

    [25] XU Yinglun, TANG Shuijing, YU Xiaochong et al. Mode splitting induced by an arbitrarily shaped Rayleigh scatterer in a whispering-gallery microcavity[J]. Physical Review A, 97, 063828(2018).

    [26] SHAO Linbo, JIANG Xuefeng, YU Xiaochong et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening[J]. Advanced Materials, 25, 5616-5620(2013).

    [27] FARD S T, GRIST S M, DONZELLA V et al. Label-free silicon photonic biosensors for use in clinical diagnostics[C], 8629, 49-62(2013).

    [28] VOLLMER F, ARNOLD S. Whispering-gallery-mode biosensing: label-free detection down to single molecules[J]. Nature Methods, 5, 591-596(2008).

    [29] VOLLMERA F, ARNOLDB S, KENGB D. Single virus detection from the reactive shift of a whispering-gallery mode[J]. PNAS, 20701-20704(2008).

    [30] BAASKE M D, FOREMAN M R, VOLLMER F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform[J]. Nature Nanotechnology, 9, 933-939(2014).

    [31] YU Xiaochong, TANG Shuijing, LIU Wenjing et al. Single-molecule optofluidic microsensor with interface whispering gallery modes[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, 20701-20704(2022).

    [32] YANG Daquan, DUAN Bing, WANG Aiqiang et al. Packaged microbubble resonator for versatile optical sensing[J]. Journal of Lightwave Technology, 38, 4555-4559(2020).

    [33] ZHU Jiangang, OZDEMIR S K, XIAO Yunfeng et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator[J]. Nature Photonics, 4, 46-49(2009).

    [34] SU J, GOLDBERG A F G, STOLTZ B M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators[J]. Light: Science & Applications, 5, e16001(2016).

    [35] YU Deshui, HUMAR M, MESERVE K et al. Whispering-gallery-mode sensors for biological and physical sensing[J]. Nature Reviews Methods Primers, 1, 83(2021).

    [36] TANG Shuijing, LI Beibei, XIAO Yunfeng. Optical sensing with whispering-gallery microcavities[J]. Physics, 48, 137-147(2019).

    [37] TANG Shuijing, ZHANG Mingjie, SUN Jialve et al. Single-particle photoacoustic vibrational spectroscopy using optical microresonators[J]. Nature Photonics, 17, 951-956(2023).

    [38] KATRIEN DE VOS I B, SCHACHT E, BIENSTMAN P et al. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing[J]. Optics Express, 15, 7610-7615(2007).

    [39] BAEHR-JONES T, HOCHBERG M, WALKER C et al. High-Q optical resonators in silicon-on-insulator-based slot waveguides[J]. Applied Physics Letters, 86, 081101(2005).

    [40] BARRIOS C A, GYLFASON K B, SÁNCHEZ B et al. Slot-waveguide biochemical sensor[J]. Optics Letters, 32, 3080-3082(2007).

    [41] CLAES T, MOLERA J G, DE VOS K et al. Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator[J]. IEEE Photonics Journal, 1, 197-204(2009).

    [42] FLUECKIGER J, SCHMIDT S, DONZELLA V et al. Sub-wavelength grating for enhanced ring resonator biosensor[J]. Optics Express, 24, 15672-15686(2016).

    [43] LUAN E, YUN Han, LAPLATINE L et al. Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-11(2019).

    [44] KITA D M, MICHON J, JOHNSON S G et al. Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?[J]. Optica, 5, 1046-1054(2018).

    [45] PUUMALA L S, GRIST S M, WICKREMASINGHE K et al. An optimization framework for silicon photonic evanescent-field biosensors using sub-wavelength gratings[J]. Biosensors (Basel), 12, 840(2022).

    [46] FARD S T, DONZELLA V, SCHMIDT S A et al. Performance of ultra-thin SOI-based resonators for sensing applications[J]. Optics Express, 22, 14166-14179(2014).

    [47] HU Shuren, QIN Kun, KRAVCHENKO I I et al. Suspended micro-ring resonator for enhanced biomolecule detection sensitivity[C], 8933, 33-39(2014).

    [48] CASTELLO PEDRERO L, GOMEZ GOMEZ M I, GARCIA RUPEREZ J et al. Performance improvement of a silicon nitride ring resonator biosensor operated in the TM mode at 1310 nm[J]. Biomed Optics Express, 12, 7244-7260(2021).

    [49] DINH T T D, LE ROUX X, ZHANG Jianhao et al. Controlling the modal confinement in silicon nanophotonic waveguides through dual‐metamaterial engineering[J]. Laser & Photonics Reviews, 17, 2100305(2023).

    [50] JIANG Xianxin, YE Junjun, ZOU Jun et al. Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode[J]. Optics Letters, 38, 1349-1351(2013).

    [51] DING Zuoqin, SUN Jialve, LI Changhui et al. Broadband ultrasound detection using silicon micro-ring resonators[J]. Journal of Lightwave Technology, 1-6(2022).

    [52] DAI Daoxin. Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators[J]. Optics Express, 17, 23817-23822(2009).

    [53] XIE Zhenyi, CAO Ziwei, LIU Yong et al. Highly-sensitive optical biosensor based on equal FSR cascaded microring resonator with intensity interrogation for detection of progesterone molecules[J]. Optics Express, 25, 33193-33201(2017).

    [54] RAMACHANDRAN A, WANG S, CLARKE J et al. A universal biosensing platform based on optical micro-ring resonators[J]. Biosensors and Bioelectronics, 23, 939-944(2008).

    [55] NING Shupeng, CHANG Haochen, FAN Kangchieh et al. A point-of-care biosensor for rapid detection and differentiation of COVID-19 virus (SARS-CoV-2) and influenza virus using subwavelength grating micro-ring resonator[J]. Applied Physics Reviews, 10, 021410(2023).

    [56] A J QAVI, R C BAILEY. Multiplexed detection and label‐free quantitation of micrornas using arrays of silicon photonic microring resonators[J]. Angewandte Chemie International Edition, 49, 4608-4611(2010).

    [57] QAVI A J, MESERVE K, AMAN J M et al. Rapid detection of an Ebola biomarker with optical microring resonators[J]. Cell Reports Methods, 2, 100234(2022).

    [58] WASHBURN A L, SHIA W W, LENKEIT K A et al. Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays[J]. The Analyst, 141, 5358-5365(2016).

    [59] GROSMAN A, DUANIS ASSAF T, MAZURSKI N et al. On-chip multivariant COVID 19 photonic sensor based on silicon nitride double-microring resonators[J]. Nanophotonics, 12, 2831-2839(2023).

    [60] LERMA ARCE A G C, HALLYNCK E, DUBRUEL P et al. Reaction tubes as a platform for silicon nanophotonic ring resonator biosensors[C], IW4A(2013).

    [61] RYCKEBOER E, VIERENDEELS J, LEE A et al. Measurement of small molecule diffusion with an optofluidic silicon chip[J]. Lab on a Chip, 13, 4392-4399(2013).

    [62] WESTERVELD W J, MAHMUD UL HASAN M, SHNAIDERMAN R et al. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics[J]. Nature Photonics, 15, 341-345(2021).

    [63] PAN Jingshun, LI Qiang, FENG Yaoming et al. Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography[J]. Nature Communications, 14, 3250(2023).

    [64] ALJOHANI E, GUNDAVARAPU S, CHAPMAN C A et al. Silicon photonics system for low-cost rapid quantification of biomarkers in blood[C](2023).

    [65] CHOW E, GROT A, MIRKARIMI L W et al. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity[J]. Optics Letters, 29, 1093-1095(2004).

    [66] PAL S, GUILLERMAIN E, SRIRAM R et al. Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing[J]. Biosensors and Bioelectronics, 26, 4024-4031(2011).

    [67] ASANO T, NODA S. Optimization of photonic crystal nanocavities based on deep learning[J]. Optics Express, 26, 32704-32717(2018).

    [68] FORESI J S, VILLENEUVE P R, FERRERA J et al. Photonic-bandgap microcavities in opticalwaveguides[J]. Nature, 390, 143-145(1997).

    [69] DEOTARE P B, MCCUTCHEON M W, FRANK I W et al. High quality factor photonic crystal nanobeam cavities[J]. Applied Physics Letters, 94, 121106(2009).

    [70] LIN Shiyun, CROZIER K B. Trapping-assisted sensing of particles and proteins using on-chip optical microcavities[J]. ACS Nano, 7, 1725-1730(2013).

    [71] JÁGERSKÁ J, ZHANG Hua, DIAO Zhaolu et al. Refractive index sensing with an air-slot photonic crystal nanocavity[J]. Optics Letters, 35, 2523-2525(2010).

    [72] BOGAERTS W, BAETS R, DUMON P et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology[J]. Journal of Lightwave Technology, 23, 401-412(2005).

    [73] MCMILLAN J F, YU Mingbin, LEE K et al. Observation of four-wave mixing in slow-light silicon photonic crystal waveguides[J]. Optics Express, 18, 15484-15497(2010).

    [74] QUAN Qimin, BURGESS I B, TANG S K Y et al. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities[J]. Optics Express, 19, 22191-22197(2009).

    [75] XU Peipeng, YAO Kaiyuan, ZHENG Jiajiu et al. Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing[J]. Optics Express, 21, 26908-26913(2013).

    [76] XU Peipeng, ZHENG Jiajiu, ZHOU Jun et al. Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing[J]. Optics Express, 27, 3609-3616(2019).

    [77] YANG Daquan, TIAN Huiping, HUANG Jiatian et al. 2×3 photonic crystal series-parallel integrated sensor arrays based on monolithic substrates using side coupled resonator arrays[C](2012).

    [78] MANDAL S, ERICKSON D. Nanoscale optofluidic sensor arrays[J]. Optics Express, 16, 1623-1631(2008).

    [79] SUN Chunlei, ZHONG Chuyu, WEI Maoliang et al. Free-spectral-range-free filters with ultrawide tunability across the S+C+L band[J]. Photonics Research, 9, 1013-1018(2021).

    [80] LUO Ye, SUN Chunlei, WEI Maoliang et al. Integrated flexible microscale mechanical sensors based on cascaded free spectral range-free cavities[J]. Nano Lett, 23, 8898-8906(2023).

    [81] TANG Renjie, SUN Chunlei, BAO Kangjian et al. High‐resolution 2D quasi‐distributed optical sensing with on‐chip multiplexed FSR‐free nanobeam cavity array[J]. Laser & Photonics Reviews, 18, 2300828(2023).

    [82] SUN Chunlei, YIN Yuexin, CHEN Zequn et al. Tunable narrow-band single-channel add-drop integrated optical filter with ultrawide FSR[J]. PhotoniX, 3, 12(2022).

    [83] SUN Chunlei, CHEN Zequn, YIN Yuexin et al. Broadband and high-resolution integrated spectrometer based on a tunable FSR-free optical filter array[J]. ACS Photonics, 9, 2973-2980(2022).

    [84] MA Tao, YUAN Jinhui, SUN Lei et al. Simultaneous measurement of the refractive index and temperature based on microdisk resonator with two whispering-gallery modes[J]. IEEE Photonics Journal, 9, 1-13(2017).

    [85] TANG Liwei, LI Yu, LI Jiachen et al. Temperature-insensitive Mach-Zehnder interferometer based on a silicon nitride waveguide platform[J]. Optics Letters, 45, 2780-2783(2020).

    [86] SINGH V, LIN P T, PATEL N et al. Mid-infrared materials and devices on a Si platform for optical sensing[J]. Science and Technology of Advanced Materials, 15, 014603(2014).

    [87] LI Lan, LIN Hongtao, QIAO Shutao et al. Integrated flexible chalcogenide glass photonic devices[J]. Nature Photonics, 8, 64364-64369(2014).

    [88] KOHLER D, SCHINDLER G, HAHN L et al. Biophotonic sensors with integrated Si(3)N(4)-organic hybrid (SiNOH) lasers for point-of-care diagnostics[J]. Light: Science & Applications, 10, 64(2021).

    [89] IADANZA S, MENDOZA-CASTRO J H, OLIVEIRA T et al. High-Q asymmetrically cladded silicon nitride 1D photonic crystals cavities and hybrid external cavity lasers for sensing in air and liquids[J]. Nanophotonics, 11, 4183-4196(2022).

    [90] BRYAN M R, BUTT J N, BUCUKOVSKI J et al. Biosensing with silicon nitride microring resonators integrated with an on-chip filter bank spectrometer[J]. ACS Sensors, 8, 739-747(2023).

    [91] XU Xiangyi, CHEN Weijian, ZHAO Guangming et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping[J]. Light: Science & Applications, 7, 62(2018).

    [92] SCHWARZ B, REININGER P, RISTANIC D et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures[J]. Nature Communications, 5, 4085(2014).

    [93] GEUZEBROEK D H, BESSELINK G A J, SCHREUDER F et al. Silicon-nitride biophotonic sensing platform[C], 10921, 143-149(2019).

    [94] BOGAERTS W, DE HEYN P, VAN VAERENBERGH T et al. Silicon microring resonators[J]. Laser & Photonics Reviews, 6, 47-73(2011).

    [95] DIAS L, SHOMAN H, LUAN E et al. Cost-effective silicon-photonic biosensors using doped silicon detectors and a broadband source[J]. Optics Express, 31, 9135-9145(2023).

    [96] DHOORE S, KöNINGER A, MEYER R et al. Electronically Tunable Distributed Feedback (DFB) laser on silicon[J]. Laser & Photonics Reviews, 13, 1800287(2019).

    [97] SHANG Chen, HUGHES Eamonn, WAN Yating et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters[J]. Optica, 8, 749-754(2021).

    [98] LIU Songtao, WU Xinru, JUNG Daehwan et al. High-channel-count 20  GHz passively mode-locked quantum dot laser directly grown on Si with 41  Tbit/s transmission capacity[J]. Optica, 6, 128-134(2019).

    [99] ZHOU Zhican, Xiangpeng OU, FANG Yuetong et al. Prospects and applications of on-chip lasers[J]. eLight, 3, 1(2023).

    [100] LI A, YAO C, XIA J et al. Advances in cost-effective integrated spectrometers[J]. Light: Science & Applications, 11, 174(2022).

    [101] LAPLATINE L, LUAN Enxiao, CHEUNG K et al. System-level integration of active silicon photonic biosensors using fan-out wafer-level-packaging for low cost and multiplexed point-of-care diagnostic testing[J]. Sensors and Actuators B: Chemical, 273, 1610-1617(2018).

    [102] ZHANG Xiaosheng, KWON K, HENRIKSSON J et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR[J]. Nature, 603, 253-258(2022).

    [103] SEOK T J, KWON K, HENRIKSSON J et al. Wafer-scale silicon photonic switches beyond die size limit[J]. Optica, 6, 490-494(2019).

    Tools

    Get Citation

    Copy Citation Text

    Boshu SUN, Chunlei SUN, Renjie TANG, Yiting WANG, Lan LI. Research Progress of Large-scale Integrated Optical Microcavities for Sensing(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Microcavity Photonics

    Received: Mar. 18, 2024

    Accepted: Apr. 28, 2024

    Published Online: Jun. 20, 2024

    The Author Email: Lan LI (lilan@westlake.edu.cn)

    DOI:10.3788/gzxb20245305.0553102

    Topics