Acta Photonica Sinica, Volume. 53, Issue 5, 0553102(2024)
Research Progress of Large-scale Integrated Optical Microcavities for Sensing(Invited)
[1] Hongyan GAO, Zhien WANG, Feiyu YANG et al. Graphene-integrated mesh electronics with converged multifunctionality for tracking multimodal excitation-contraction dynamics in cardiac microtissues. Nature Communications, 15, 2321(2024).
[2] Xinting ZHENG, Zijie YANG, Laura SUTARLIE et al. Battery-free and AI-enabled multiplexed sensor patches for wound monitoring. Science Advances, 9, eadg6670(2023).
[3] Rong CAI, C NGWADOM, R SAXENA et al. Creation of a point-of-care therapeutics sensor using protein engineering, electrochemical sensing and electronic integration. Nature Communications, 15, 1689(2024).
[4] Rui GE, Qiuhong YU, Feng ZHOU et al. Dual-modal piezotronic transistor for highly sensitive vertical force sensing and lateral strain sensing. Nature Communications, 14, 6315(2023).
[5] L A MAGRUDER, S L FARRELL, A NEUENSCHWANDER et al. Monitoring Earth's climate variables with satellite laser altimetry. Nature Reviews Earth & Environment, 5, 120-136(2024).
[6] M GIEßLER, Julian WERTH, B WALTERSBERGER et al. A wearable sensor and framework for accurate remote monitoring of human motion. Communications Engineering, 3, 20(2024).
[7] A KHUNTE, V SANGHA, E K OIKONOMOU et al. Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices. NPJ Digit Med, 6, 124(2023).
[8] Wenzhong YAN, Shuguang LI, A MEHTA et al. Origami-based integration of robots that sense, decide, and respond. Nature Communications, 14, 1553(2023).
[9] F TOSI, A MURA, A COFANO et al. Salts and organics on Ganymede's surface observed by the JIRAM spectrometer onboard Juno. Nature Astronomy, 8, 82-93(2023).
[10] Shuo HUANG, M R RUIZ, O K CASTELL et al. High-throughput optical sensing of nucleic acids in a nanopore array. Nature Nanotechnology, 10, 986-991(2015).
[11] A MAITY, H PU, X SUI et al. Scalable graphene sensor array for real-time toxins monitoring in flowing water. Nature Communications, 14, 4184(2023).
[12] Chaoyang GONG, Xi YANG, Shuijing TANG et al. Submonolayer biolasers for ultrasensitive biomarker detection. Light: Science & Applications, 12, 292(2023).
[13] Yijia WANG, Chonglei ZHANG, Yuquan ZHANG et al. Investigation of phase SPR biosensor for efficient targeted drug screening with high sensitivity and stability. Sensors and Actuators B: Chemical, 209, 313-322(2015).
[14] Yuan YUAN, Yiwei PENG, W V SORIN et al. A 5× 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions. Nature Communications, 15, 918(2024).
[15] W C HSU, N NUJHAT, B KUPP et al. Sub-volt high-speed silicon MOSCAP microring modulator driven by high-mobility conductive oxide. Nature Communications, 15, 826(2024).
[16] S MAUTHE, Y BAUMGARTNER, M SOUSA et al. High-speed III-V nanowire photodetector monolithically integrated on Si. Nature Communications, 11, 4565(2020).
[17] Jingyi WANG, Beibei PAN, Zi WANG et al. Single-pixel p-graded-n junction spectrometers. Nature Communications, 15, 1773(2024).
[18] E K SACKMANN, A L FULTON, D J BEEBE. The present and future role of microfluidics in biomedical research. Nature, 507, 181-189(2014).
[19] E RYCKEBOER, R BOCKSTAELE, M VANSLEMBROUCK et al. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. Biomedical Optics Express, 5, 1636(2014).
[20] Shuijing TANG, Shuai LIU, Xiaochong YU et al. On‐chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects. Advanced Materials, 30, 1800262(2018).
[21] Xuefeng JIANG, A J QAVI, S H HUANG et al. Whispering-gallery sensors. Matter, 3, 371-392(2020).
[22] E GAVARTIN, R BRAIVE, I SAGNES et al. Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Physical Review Letters, 106, 203902(2011).
[23] A GOBAN, C L HUNG, S P YU et al. Atom-light interactions in photonic crystals. Nature Communications, 5, 3808(2014).
[24] M IQBAL, M A GLEESON, B SPAUGH et al. Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 16, 654-661(2010).
[25] Yinglun XU, Shuijing TANG, Xiaochong YU et al. Mode splitting induced by an arbitrarily shaped Rayleigh scatterer in a whispering-gallery microcavity. Physical Review A, 97, 063828(2018).
[26] Linbo SHAO, Xuefeng JIANG, Xiaochong YU et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Advanced Materials, 25, 5616-5620(2013).
[27] S T FARD, S M GRIST, V DONZELLA et al. Label-free silicon photonic biosensors for use in clinical diagnostics, 8629, 49-62(2013).
[28] F VOLLMER, S ARNOLD. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nature Methods, 5, 591-596(2008).
[29] F VOLLMERA, S ARNOLDB, D KENGB. Single virus detection from the reactive shift of a whispering-gallery mode. PNAS, 20701-20704(2008).
[30] M D BAASKE, M R FOREMAN, F VOLLMER. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nature Nanotechnology, 9, 933-939(2014).
[31] Xiaochong YU, Shuijing TANG, Wenjing LIU et al. Single-molecule optofluidic microsensor with interface whispering gallery modes. Proceedings of the National Academy of Sciences of the United States of America, 119, 20701-20704(2022).
[32] Daquan YANG, Bing DUAN, Aiqiang WANG et al. Packaged microbubble resonator for versatile optical sensing. Journal of Lightwave Technology, 38, 4555-4559(2020).
[33] Jiangang ZHU, S K OZDEMIR, Yunfeng XIAO et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nature Photonics, 4, 46-49(2009).
[34] J SU, A F G GOLDBERG, B M STOLTZ. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light: Science & Applications, 5, e16001(2016).
[35] Deshui YU, M HUMAR, K MESERVE et al. Whispering-gallery-mode sensors for biological and physical sensing. Nature Reviews Methods Primers, 1, 83(2021).
[36] Shuijing TANG, Beibei LI, Yunfeng XIAO. Optical sensing with whispering-gallery microcavities. Physics, 48, 137-147(2019).
[37] Shuijing TANG, Mingjie ZHANG, Jialve SUN et al. Single-particle photoacoustic vibrational spectroscopy using optical microresonators. Nature Photonics, 17, 951-956(2023).
[38] VOS I B KATRIEN DE, E SCHACHT, P BIENSTMAN et al. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Optics Express, 15, 7610-7615(2007).
[39] T BAEHR-JONES, M HOCHBERG, C WALKER et al. High-Q optical resonators in silicon-on-insulator-based slot waveguides. Applied Physics Letters, 86, 081101(2005).
[40] C A BARRIOS, K B GYLFASON, B SÁNCHEZ et al. Slot-waveguide biochemical sensor. Optics Letters, 32, 3080-3082(2007).
[41] T CLAES, J G MOLERA, VOS K DE et al. Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator. IEEE Photonics Journal, 1, 197-204(2009).
[42] J FLUECKIGER, S SCHMIDT, V DONZELLA et al. Sub-wavelength grating for enhanced ring resonator biosensor. Optics Express, 24, 15672-15686(2016).
[43] E LUAN, Han YUN, L LAPLATINE et al. Enhanced sensitivity of subwavelength multibox waveguide microring resonator label-free biosensors. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-11(2019).
[44] D M KITA, J MICHON, S G JOHNSON et al. Are slot and sub-wavelength grating waveguides better than strip waveguides for sensing?. Optica, 5, 1046-1054(2018).
[45] L S PUUMALA, S M GRIST, K WICKREMASINGHE et al. An optimization framework for silicon photonic evanescent-field biosensors using sub-wavelength gratings. Biosensors (Basel), 12, 840(2022).
[46] S T FARD, V DONZELLA, S A SCHMIDT et al. Performance of ultra-thin SOI-based resonators for sensing applications. Optics Express, 22, 14166-14179(2014).
[47] Shuren HU, Kun QIN, I I KRAVCHENKO et al. Suspended micro-ring resonator for enhanced biomolecule detection sensitivity, 8933, 33-39(2014).
[48] L CASTELLO PEDRERO, M I GOMEZ GOMEZ, J GARCIA RUPEREZ et al. Performance improvement of a silicon nitride ring resonator biosensor operated in the TM mode at 1310 nm. Biomed Optics Express, 12, 7244-7260(2021).
[49] T T D DINH, X LE ROUX, Jianhao ZHANG et al. Controlling the modal confinement in silicon nanophotonic waveguides through dual‐metamaterial engineering. Laser & Photonics Reviews, 17, 2100305(2023).
[50] Xianxin JIANG, Junjun YE, Jun ZOU et al. Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode. Optics Letters, 38, 1349-1351(2013).
[51] Zuoqin DING, Jialve SUN, Changhui LI et al. Broadband ultrasound detection using silicon micro-ring resonators. Journal of Lightwave Technology, 1-6(2022).
[52] Daoxin DAI. Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators. Optics Express, 17, 23817-23822(2009).
[53] Zhenyi XIE, Ziwei CAO, Yong LIU et al. Highly-sensitive optical biosensor based on equal FSR cascaded microring resonator with intensity interrogation for detection of progesterone molecules. Optics Express, 25, 33193-33201(2017).
[54] A RAMACHANDRAN, S WANG, J CLARKE et al. A universal biosensing platform based on optical micro-ring resonators. Biosensors and Bioelectronics, 23, 939-944(2008).
[55] Shupeng NING, Haochen CHANG, Kangchieh FAN et al. A point-of-care biosensor for rapid detection and differentiation of COVID-19 virus (SARS-CoV-2) and influenza virus using subwavelength grating micro-ring resonator. Applied Physics Reviews, 10, 021410(2023).
[56] QAVI A J, BAILEY R C. Multiplexed detection and label‐free quantitation of micrornas using arrays of silicon photonic microring resonators. Angewandte Chemie International Edition, 49, 4608-4611(2010).
[57] A J QAVI, K MESERVE, J M AMAN et al. Rapid detection of an Ebola biomarker with optical microring resonators. Cell Reports Methods, 2, 100234(2022).
[58] A L WASHBURN, W W SHIA, K A LENKEIT et al. Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays. The Analyst, 141, 5358-5365(2016).
[59] A GROSMAN, T DUANIS ASSAF, N MAZURSKI et al. On-chip multivariant COVID 19 photonic sensor based on silicon nitride double-microring resonators. Nanophotonics, 12, 2831-2839(2023).
[60] A G C LERMA ARCE, E HALLYNCK, P DUBRUEL et al. Reaction tubes as a platform for silicon nanophotonic ring resonator biosensors, IW4A(2013).
[61] E RYCKEBOER, J VIERENDEELS, A LEE et al. Measurement of small molecule diffusion with an optofluidic silicon chip. Lab on a Chip, 13, 4392-4399(2013).
[62] W J WESTERVELD, M MAHMUD UL HASAN, R SHNAIDERMAN et al. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nature Photonics, 15, 341-345(2021).
[63] Jingshun PAN, Qiang LI, Yaoming FENG et al. Parallel interrogation of the chalcogenide-based micro-ring sensor array for photoacoustic tomography. Nature Communications, 14, 3250(2023).
[64] E ALJOHANI, S GUNDAVARAPU, C A CHAPMAN et al. Silicon photonics system for low-cost rapid quantification of biomarkers in blood(2023).
[65] E CHOW, A GROT, L W MIRKARIMI et al. Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Optics Letters, 29, 1093-1095(2004).
[66] PAL S , E GUILLERMAIN, R SRIRAM et al. Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing. Biosensors and Bioelectronics, 26, 4024-4031(2011).
[67] T ASANO, S NODA. Optimization of photonic crystal nanocavities based on deep learning. Optics Express, 26, 32704-32717(2018).
[68] J S FORESI, P R VILLENEUVE, J FERRERA et al. Photonic-bandgap microcavities in opticalwaveguides. Nature, 390, 143-145(1997).
[69] P B DEOTARE, M W MCCUTCHEON, I W FRANK et al. High quality factor photonic crystal nanobeam cavities. Applied Physics Letters, 94, 121106(2009).
[70] Shiyun LIN, K B CROZIER. Trapping-assisted sensing of particles and proteins using on-chip optical microcavities. ACS Nano, 7, 1725-1730(2013).
[71] J JÁGERSKÁ, Hua ZHANG, Zhaolu DIAO et al. Refractive index sensing with an air-slot photonic crystal nanocavity. Optics Letters, 35, 2523-2525(2010).
[72] W BOGAERTS, R BAETS, P DUMON et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. Journal of Lightwave Technology, 23, 401-412(2005).
[73] J F MCMILLAN, Mingbin YU, K LEE et al. Observation of four-wave mixing in slow-light silicon photonic crystal waveguides. Optics Express, 18, 15484-15497(2010).
[74] Qimin QUAN, I B BURGESS, S K Y TANG et al. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities. Optics Express, 19, 22191-22197(2009).
[75] Peipeng XU, Kaiyuan YAO, Jiajiu ZHENG et al. Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing. Optics Express, 21, 26908-26913(2013).
[76] Peipeng XU, Jiajiu ZHENG, Jun ZHOU et al. Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing. Optics Express, 27, 3609-3616(2019).
[77] Daquan YANG, Huiping TIAN, Jiatian HUANG et al. 2×3 photonic crystal series-parallel integrated sensor arrays based on monolithic substrates using side coupled resonator arrays(2012).
[78] S MANDAL, D ERICKSON. Nanoscale optofluidic sensor arrays. Optics Express, 16, 1623-1631(2008).
[79] Chunlei SUN, Chuyu ZHONG, Maoliang WEI et al. Free-spectral-range-free filters with ultrawide tunability across the S+C+L band. Photonics Research, 9, 1013-1018(2021).
[80] Ye LUO, Chunlei SUN, Maoliang WEI et al. Integrated flexible microscale mechanical sensors based on cascaded free spectral range-free cavities. Nano Lett, 23, 8898-8906(2023).
[81] Renjie TANG, Chunlei SUN, Kangjian BAO et al. High‐resolution 2D quasi‐distributed optical sensing with on‐chip multiplexed FSR‐free nanobeam cavity array. Laser & Photonics Reviews, 18, 2300828(2023).
[82] Chunlei SUN, Yuexin YIN, Zequn CHEN et al. Tunable narrow-band single-channel add-drop integrated optical filter with ultrawide FSR. PhotoniX, 3, 12(2022).
[83] Chunlei SUN, Zequn CHEN, Yuexin YIN et al. Broadband and high-resolution integrated spectrometer based on a tunable FSR-free optical filter array. ACS Photonics, 9, 2973-2980(2022).
[84] Tao MA, Jinhui YUAN, Lei SUN et al. Simultaneous measurement of the refractive index and temperature based on microdisk resonator with two whispering-gallery modes. IEEE Photonics Journal, 9, 1-13(2017).
[85] Liwei TANG, Yu LI, Jiachen LI et al. Temperature-insensitive Mach-Zehnder interferometer based on a silicon nitride waveguide platform. Optics Letters, 45, 2780-2783(2020).
[86] V SINGH, P T LIN, N PATEL et al. Mid-infrared materials and devices on a Si platform for optical sensing. Science and Technology of Advanced Materials, 15, 014603(2014).
[87] Lan LI, Hongtao LIN, Shutao QIAO et al. Integrated flexible chalcogenide glass photonic devices. Nature Photonics, 8, 64364-64369(2014).
[88] D KOHLER, G SCHINDLER, L HAHN et al. Biophotonic sensors with integrated Si(3)N(4)-organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light: Science & Applications, 10, 64(2021).
[89] S IADANZA, J H MENDOZA-CASTRO, T OLIVEIRA et al. High-Q asymmetrically cladded silicon nitride 1D photonic crystals cavities and hybrid external cavity lasers for sensing in air and liquids. Nanophotonics, 11, 4183-4196(2022).
[90] M R BRYAN, J N BUTT, J BUCUKOVSKI et al. Biosensing with silicon nitride microring resonators integrated with an on-chip filter bank spectrometer. ACS Sensors, 8, 739-747(2023).
[91] Xiangyi XU, Weijian CHEN, Guangming ZHAO et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping. Light: Science & Applications, 7, 62(2018).
[92] B SCHWARZ, P REININGER, D RISTANIC et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nature Communications, 5, 4085(2014).
[93] D H GEUZEBROEK, G A J BESSELINK, F SCHREUDER et al. Silicon-nitride biophotonic sensing platform, 10921, 143-149(2019).
[94] W BOGAERTS, P DE HEYN, T VAN VAERENBERGH et al. Silicon microring resonators. Laser & Photonics Reviews, 6, 47-73(2011).
[95] L DIAS, H SHOMAN, E LUAN et al. Cost-effective silicon-photonic biosensors using doped silicon detectors and a broadband source. Optics Express, 31, 9135-9145(2023).
[96] S DHOORE, A KöNINGER, R MEYER et al. Electronically Tunable Distributed Feedback (DFB) laser on silicon. Laser & Photonics Reviews, 13, 1800287(2019).
[97] Chen SHANG, Eamonn HUGHES, Yating WAN et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica, 8, 749-754(2021).
[98] Songtao LIU, Xinru WU, Daehwan JUNG et al. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity. Optica, 6, 128-134(2019).
[99] Zhican ZHOU, OU Xiangpeng, Yuetong FANG et al. Prospects and applications of on-chip lasers. eLight, 3, 1(2023).
[100] A LI, C YAO, J XIA et al. Advances in cost-effective integrated spectrometers. Light: Science & Applications, 11, 174(2022).
[101] L LAPLATINE, Enxiao LUAN, K CHEUNG et al. System-level integration of active silicon photonic biosensors using fan-out wafer-level-packaging for low cost and multiplexed point-of-care diagnostic testing. Sensors and Actuators B: Chemical, 273, 1610-1617(2018).
[102] Xiaosheng ZHANG, K KWON, J HENRIKSSON et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature, 603, 253-258(2022).
[103] T J SEOK, K KWON, J HENRIKSSON et al. Wafer-scale silicon photonic switches beyond die size limit. Optica, 6, 490-494(2019).
Get Citation
Copy Citation Text
Boshu SUN, Chunlei SUN, Renjie TANG, Yiting WANG, Lan LI. Research Progress of Large-scale Integrated Optical Microcavities for Sensing(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553102
Category: Special Issue for Microcavity Photonics
Received: Mar. 18, 2024
Accepted: Apr. 28, 2024
Published Online: Jun. 20, 2024
The Author Email: Lan LI (lilan@westlake.edu.cn)