Journal of Synthetic Crystals, Volume. 51, Issue 9-10, 1643(2022)

Research Progress on the Growth and Property Optimization of Relaxor Ferroelectric Single Crystals

LIU Yangbin*, LI Qian, XIAO Ruoyu, XU Zhuo, and LI Fei
Author Affiliations
  • [in Chinese]
  • show less
    References(64)

    [1] [1] ZHANG Z, XU J L, YANG L L, et al. Design and comparison of PMN-PT single crystals and PZT ceramics based medical phased array ultrasonic transducer[J]. Sensors and Actuators A: Physical, 2018, 283: 273-281.

    [3] [3] PENG C, WU H Y, KIM S, et al. Recent advances in transducers for intravascular ultrasound (IVUS) imaging[J]. Sensors, 2021, 21(10): 3540.

    [4] [4] HUANG Y, ZHANG S J, WANG P H, et al. Hi-fi stake piezo single crystal actuator[J]. Actuators, 2018, 7(3): 60.

    [5] [5] BAASANDORJ L, CHEN Z B. Recent developments on relaxor-PbTiO3 ferroelectric crystals[J]. Crystals, 2021, 12(1): 56.

    [6] [6] ZHANG S J, LI F, JIANG X N, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-A review[J]. Progress in Materials Science, 2015, 68: 1-66.

    [7] [7] SONG K X, LI Q, GUO H S, et al. Composition and electrical properties characterization of a 5” diameter PIN-PMN-PT single crystal by the modified Bridgman method[J]. Journal of Alloys and Compounds, 2021, 851: 156145.

    [8] [8] FAN H Q, ZHAO L L, TANG B, et al. Growth and characterization of PMNT relaxor-based ferroelectric single crystals by flux method[J]. Materials Science and Engineering: B, 2003, 99(1/2/3): 183-186.

    [9] [9] MATSUSHITATA M, ECHIZENYA K. Continuous feeding growth of ternary PIN-PMN-PT single crystals[C]. IEEE, 2014.

    [10] [10] ECHIZENYA K, MATSUSHITA M. Continuous feed growth and characterization of PMN-PT single crystals[C]//2011 IEEE International Ultrasonics Symposium. Orlando, FL, USA. IEEE,: 1813-1816.

    [11] [11] ECHIZENYA K, NAKAMURA K, MIZUNO K. PMN-PT and PIN-PMN-PT single crystals grown by continuous-feeding Bridgman method[J]. Journal of Crystal Growth, 2020, 531: 125364.

    [12] [12] KANG S J L, PARK J H, KO S Y, et al. Solid-state conversion of single crystals: the principle and the state-of-the-art[J]. Journal of the American Ceramic Society, 2015, 98(2): 347-360.

    [15] [15] ZHANG S J, LEE S M, KIM D H, et al. Characterization of Mn-modified Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 single crystals for high power broad bandwidth transducers[J]. Applied Physics Letters, 2008, 93(12): 122908.

    [16] [16] Ceracomp Company Ltd.Ceracomp-PMNT PSC Brochure [EB/OL].[2015-09-21]. http://www.ceracomp.com/.

    [17] [17] ZAWILSKI K T, DEMATTEI R C, FEIGELSON R S. Zone leveling of lead magnesium niobate-lead titanate crystals using RF heating[J]. Journal of Crystal Growth, 2005, 277(1/2/3/4): 393-400.

    [18] [18] LUO J, ZHANG S J, SHROUT T R, et al. Advances in manufacturing relaxor piezoelectric single crystals[C]//2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics. Nara, Japan. IEEE: 557-560.

    [19] [19] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268.

    [20] [20] LEE H Y, ZHANG S J, SHROUT T R. Development of high TC PMN-PZT piezoelectric single crystals by the solid-state crystal growth (SSCG) technique[C]//2008 17th IEEE International Symposium on the Applications of Ferroelectrics. Santa Re, NM, USA. IEEE,: 1-2.

    [21] [21] CHEN H B, LIANG Z, LUO L H, et al. Bridgman growth, crystallographic characterization and electrical properties of relaxor-based ferroelectric single crystal PIMNT[J]. Journal of Alloys and Compounds, 2012, 518: 63-67.

    [22] [22] CHEN J W, LI X B, ZHAO X Y, et al. Compositional segregation, structural transformation and property-temperature relationship of high-Curie temperature Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 9316-9328.

    [23] [23] SRIMATHY B, KUMAR J. Effect of donor dopants on the properties of flux grown PZN-PT single crystals[J].Applied Physics A, 2021, 127(6): 1-7.

    [24] [24] LI F, LIN D B, CHEN Z B, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials, 2018, 17(4): 349-354.

    [25] [25] OH H T, JOO H J, KIM M C, et al. Effect of Mn on dielectric and piezoelectric properties of 71PMN-29PT[71Pb(Mg1/3Nb2/3)O3-29PbTiO3]single crystals and polycrystalline ceramics[J]. Journal of the Korean Ceramic Society, 2018, 55(2): 166-173.

    [26] [26] XIONG J J, WANG Z J, YANG X M, et al. Improvement of temperature-stability and piezoelectric performance of Pb(In0.5Nb0.5)O3-PbTiO3 crystals via Nd doping[J]. Ceramics International, 2021, 47(14): 19575-19581.

    [27] [27] LI C C, XU B, LIN D B, et al. Atomic-scale origin of ultrahigh piezoelectricity in samarium-doped PMN-PT ceramics[J]. Physical Review B, 2020, 101(14): 140102.

    [28] [28] LI Q, LIU Y B, LIU J F, et al. Enhanced piezoelectric properties and improved property uniformity in Nd-doped PMN-PT relaxor ferroelectric single crystals[J]. Advanced Functional Materials, 2022, 32(25): 2201719.

    [29] [29] XIONG J J, WANG Y Q, YANG X M, et al. Significant performance enhancement of Nd-doped Pb(In0.5Nb0.5)O3-PbTiO3 ferroelectric crystals[J]. CrystEngComm, 2022, 24(24): 4341-4345.

    [31] [31] WADA S, YAKO K, KAKEMOTO H, et al. Enhanced piezoelectric property of BaTiO3 single crystals with the different domain sizes[J]. Key Engineering Materials, 2004, 269: 19-22.

    [32] [32] WADA S, YAKO K, KAKEMOTO H, et al. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes[J]. Journal of Applied Physics, 2005, 98(1): 014109.

    [33] [33] BELL A J, SHEPLEY P M, LI Y. Domain wall contributions to piezoelectricity in relaxor-lead titanate single crystals[J]. Acta Materialia, 2020, 195: 292-303.

    [34] [34] RAO W F, WANG Y U. Bridging domain mechanism for phase coexistence in morphotropic phase boundary ferroelectrics[J]. Applied Physics Letters, 2007, 90(18): 182906.

    [35] [35] SLUKA T, TAGANTSEV A K, DAMJANOVIC D, et al. Enhanced electromechanical response of ferroelectrics due to charged domain walls[J]. Nature Communications, 2012, 3: 748.

    [36] [36] ONDREJKOVIC P, MARTON P, GUENNOU M, et al. Piezoelectric properties of twinned ferroelectric perovskites with head-to-head and tail-to-tail domain walls[J]. Physical Review B, 2013, 88(2): 024114.

    [37] [37] WANG B, LI F, CHEN L Q. Inverse domain-size dependence of piezoelectricity in ferroelectric crystals[J]. Advanced Materials, 2021, 33(51): e2105071.

    [38] [38] LI F, WANG L H, JIN L, et al. Achieving single domain relaxor-PT crystals by high temperature poling[J]. CrystEngComm, 2014, 16(14): 2892-2897.

    [39] [39] XIONG J J, WANG Z J, YANG X M, et al. Performance enhancement of Pb(In1/2Nb1/2)O3-PbTiO3 ferroelectric single crystals using pulse poling[J]. Scripta Materialia, 2022, 215: 114694.

    [40] [40] YAMASHITA Y. Piezoelectric transducer, ultrasonic probe, and piezoelectric transducer manufacturing method: USA, 20150372219[Z]. 2015.

    [41] [41] QIU C R, WANG B, ZHANG N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 2020, 577(7790): 350-354.

    [42] [42] QIU C R, XU Z, AN Z Y, et al. In-situ domain structure characterization of Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals under alternating current electric field poling[J]. Acta Materialia, 2021, 210: 116853.

    [43] [43] WAN H T, LUO C T, LIU C, et al. Alternating current poling on sliver-mode rhombohedral Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Acta Materialia, 2021, 208: 116759.

    [44] [44] XU J L, DENG H, ZENG Z, et al. Piezoelectric performance enhancement of Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 crystals by alternating current polarization for ultrasonic transducer[J]. Applied Physics Letters, 2018, 112(18): 182901.

    [45] [45] CHANG W Y, CHUNG C C, LUO C T, et al. Dielectric and piezoelectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystal poled using alternating current[J]. Materials Research Letters, 2018, 6(10): 537-544.

    [46] [46] WAN H T, LUO C T, CHANG W Y, et al. Effect of poling temperature on piezoelectric and dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals under alternating current poling[J]. Applied Physics Letters, 2019, 114(17): 172901.

    [47] [47] LUO C T, WAN H T, CHANG W Y, et al. Effect of low-frequency alternating current poling on 5-mm-thick 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals [J]. Applied Physics Letters, 2019, 115(26): 269901.

    [48] [48] WAN H T, LUO C T, CHUNG C C, et al. Enhanced dielectric and piezoelectric properties of Manganese-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals by alternating current poling[J]. Applied Physics Letters, 2021, 118(10): 102904.

    [49] [49] QIU C R, LIU J F, LI F, et al. Thickness dependence of dielectric and piezoelectric properties for alternating current electric-field-poled relaxor-PbTiO3 crystals[J]. Journal of Applied Physics, 2019, 125(1): 014102.

    [50] [50] MA M, XIA S, SONG K X, et al. Enhanced dielectric and piezoelectric properties in the[001]-poled 0.25Pb(In1/2Nb1/2)O3-0.43Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 single crystal near morphotropic phase boundary by alternating current treatment[J]. Journal of Applied Physics, 2020, 127(6): 064106.

    [51] [51] LIU J F, QIU C R, QIAO L, et al. Impact of alternating current electric field poling on piezoelectric and dielectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric crystals[J]. Journal of Applied Physics, 2020, 128(9): 94104.

    [52] [52] ZHAO K, ZHENG M P, YAN X D, et al. Effect of direct current and alternating current poling on the piezoelectric properties of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(23): 27815-27822.

    [53] [53] EIMERL D. Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs[J]. Ferroelectrics, 1987, 72(1): 95-139.

    [54] [54] WEN X H, QI Y, MENG X Y. DFT study on the clamped linear electro-optic effect in KH2PO4[C]//Proceedings of 2011 International Conference on Electronics and Optoelectronics. Dalian, China. IEEE: V4-53.

    [55] [55] MASHKOVICH E A, SHUGUROV A I, OZAWA S, et al. Noncollinear electro-optic sampling of terahertz waves in a thick GaAs crystal[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(5): 732-736.

    [56] [56] ZENG R, ZHUANG C J, NIU B, et al. Measurement of transient electric fields in air gap discharge with an integrated electro-optic sensor[J]. IEEE Transactions on Plasma Science, 2013, 41(4): 955-960.

    [59] [59] SMOLENSKII G A, BEREZHNOI A A, KRAINIK N N, et al. Electro-optical properties of perovskite-type ferroelectric crystals of complex composition[J]. Bulletin of the Academy of Sciences of the USSR. 1969, 33(2): 258-260.

    [60] [60] SMOLENSKII G A, BEREZHNOI A A, PISAREV R V, et al. Anomalous dispersion of the electro-optical effect in ferroelectric PbNi1/2Nb2/3O3[J]. Fizika Tverdogo Tela. 1969, 11(5): 1120-1123.

    [61] [61] LU Y, CHENG Z Y, PARK S E, et al. Linear electro-optic effect of 0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3 single crystal[J]. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 1): 141-145.

    [62] [62] LU Y, CHENG Z Y, BARAD Y, et al. Photoelastic effects in tetragonal Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals near the morphotropic phase boundary[J]. Journal of Applied Physics, 2001, 89(9): 5075-5078.

    [63] [63] BARAD Y, LU Y, CHENG Z Y, et al. Composition, temperature, and crystal orientation dependence of the linear electro-optic properties of Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals[J]. Applied Physics Letters, 2000, 77(9): 1247-1249.

    [64] [64] WAN X M, CHAN H L W, CHOY C L, et al. Optical properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals studied by spectroscopic ellipsometry[J]. Journal of Applied Physics, 2004, 96(3): 1387-1391.

    [65] [65] WAN X M, LUO H S, WANG J, et al. Investigation on optical transmission spectra of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Solid State Communications, 2004, 129(6): 401-405.

    [66] [66] HE C J, ZHOU Z X, LIU D J, et al. Photorefractive effect in relaxor ferroelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 single crystal[J]. Applied Physics Letters, 2006, 89(26): 261111.

    [67] [67] HE C J, TANG Y X, ZHAO X Y, et al. Optical dispersion properties of tetragonal relaxor ferroelectric single crystals 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3[J]. Optical Materials, 2007, 29(8): 1055-1057.

    [68] [68] WU F M, YANG B, SUN E W, et al. Optical properties and dispersions of rhombohedral 0.24Pb(In1/2Nb1/2)O3-0.49Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single domain single crystal[J]. Optical Materials, 2013, 36(2): 342-345.

    [69] [69] LIU X, TAN P, MA X, et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches[J]. Science, 2022, 376(6591): 371-377.

    CLP Journals

    [1] LIU Qingxiong, WANG Tianyu, LIU Fuan, WU Qian, YIN Yanru, HE Chongjun, GAO Zeliang, XIA Mingjun. Growth and Photoelectric Properties of Nonlinear Optical Crystal K3B6O10Br[J]. Journal of Synthetic Crystals, 2023, 52(7): 1296

    Tools

    Get Citation

    Copy Citation Text

    LIU Yangbin, LI Qian, XIAO Ruoyu, XU Zhuo, LI Fei. Research Progress on the Growth and Property Optimization of Relaxor Ferroelectric Single Crystals[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1643

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 30, 2022

    Accepted: --

    Published Online: Nov. 18, 2022

    The Author Email: LIU Yangbin (liu252573944@gmail.com)

    DOI:

    CSTR:32186.14.

    Topics