Chinese Journal of Lasers, Volume. 47, Issue 2, 207018(2020)

Rapid Histological Imaging Using Stimulated Raman Scattering Microscopy

Zhang Bohan1, Guo Li1, Yao Lie2, Zou Xiang2, and Ji Minbiao1、*
Author Affiliations
  • 1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
  • 2Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200433, China
  • show less
    References(44)

    [2] Chen W. Clinical applications of PET in brain tumors[J]. Journal of Nuclear Medicine, 48, 1468-1481(2007).

    [4] Regelsberger J, Lohmann F, Helmke K et al. Ultrasound-guided surgery of deep seated brain lesions[J]. European Journal of Ultrasound, 12, 115-121(2000).

    [6] Sanai N, Eschbacher J, Hattendorf G et al. Intraoperative confocal microscopy for brain tumors: a feasibility analysis in humans[J]. Operative Neurosurgery, 68, 282-290(2011).

    [7] Stummer W, Tonn J C, Goetz C et al. 5-aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging[J]. Neurosurgery, 74, 310-320(2013).

    [8] Kremer P, Fardanesh M, Ding R et al. Intraoperative fluorescence staining of malignant brain tumors using 5-aminofluorescein-labeled albumin[J]. Operative Neurosurgery, 64, 53-61(2009).

    [9] Dombeck D A, Kasischke K A, Vishwasrao H D et al. Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 7081-7086(2003).

    [11] Movasaghi Z, Rehman S, Rehman I U. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 42, 493-541(2007).

    [13] Meyer T, Bergner N, Bielecki C et al. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis[J]. Journal of Biomedical Optics, 16, 021113(2011).

    [14] Karabeber H, Huang R M, Iacono P et al. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner[J]. ACS Nano, 8, 9755-9766(2014).

    [15] Lu F K, Basu S, Igras V et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 11624-11629(2015).

    [16] Seidel J, Miao Y P, Porterfield W et al. Structure-activity-distribution relationship study of anti-cancer antimycin-type depsipeptides[J]. Chemical Communications, 55, 9379-9382(2019).

    [17] Vanden-Hehir S, Cairns S A, Lee M et al. Alkyne-tagged PLGA allows direct visualization of nanoparticles in vitro and ex vivo by stimulated Raman scattering microscopy[J]. Biomacromolecules, 20, 4008-4014(2019).

    [18] Huang B, Yan S, Xiao L et al. Label-free imaging of nanoparticle uptake competition in single cells by hyperspectral stimulated Raman scattering[J]. Small, 14, 1703246(2018).

    [19] Lu F K, Calligaris D, Olubiyi O I et al. Label-free neurosurgical pathology with stimulated Raman imaging[J]. Cancer Research, 76, 3451-3462(2016).

    [20] Uckermann O, Galli R, Tamosaityte S et al. Label-free delineation of brain tumors by coherent anti-stokes Raman scattering microscopy in an orthotopic mouse model and human glioblastoma[J]. PLoS One, 9, e107115(2014).

    [21] Orringer D A, Pandian B, Niknafs Y S et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy[J]. Nature Biomedical Engineering, 1, 27(2017).

    [23] Yan S, Cui S S, Ke K et al. Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer[J]. Analytical Chemistry, 90, 6362-6366(2018).

    [24] Zhang J, Yan S, He Z Y et al. Small unnatural amino acid carried Raman tag for molecular imaging of genetically targeted proteins[J]. The Journal of Physical Chemistry Letters, 9, 4679-4685(2018).

    [25] Shen Y H, Zhao Z L, Zhang L Y et al. Metabolic activity induces membrane phase separation in endoplasmic reticulum[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 13394-13399(2017).

    [26] Wei L, Chen Z X, Shi L X et al. Super-multiplex vibrational imaging[J]. Nature, 544, 465-470(2017).

    [27] Cheng J X, medicine[J]. Science. 350(6264): aaa8870(2015).

    [28] Freudiger C W, Min W, Saar B G et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 322, 1857-1861(2008).

    [29] Evans C L, Xie X S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine[J]. Annual Review of Analytical Chemistry, 1, 883-909(2008).

    [30] Fu D, Holtom G, Freudiger C et al. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers[J]. The Journal of Physical Chemistry B, 117, 4634-4640(2013).

    [31] Fischer M C, Wilson J W, Robles F E et al. Invited review article: pump-probe microscopy[J]. Review of Scientific Instruments, 87, 031101(2016).

    [32] He R Y, Liu Z P, Xu Y K et al. Stimulated Raman scattering microscopy and spectroscopy with a rapid scanning optical delay line[J]. Optics Letters, 42, 659-662(2017).

    [33] Evans C L, Xu X Y, Kesari S et al. Chemically-selective imaging of brain structures with CARS microscopy[J]. Optics Express, 15, 12076-12087(2007).

    [34] Ji M, Orringer D A, Freudiger C W et al. 5(201): 201ra119[J]. label-free detection of brain tumors with stimulated Raman scattering microscopy. Science Translational Medicine(2013).

    [35] Ji M B, Lewis S, Camelo-Piragua S et al. 7(309): 309ra163(2015).

    [36] Ji M B, Arbel M, Zhang L L et al. 4(11): eaat7715(2018).

    [37] Zhang L L, Wu Y Z, Zheng B et al. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy[J]. Theranostics, 9, 2541-2554(2019).

    [38] He R Y, Xu Y K, Zhang L L et al. Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging[J]. Optica, 4, 44-47(2017).

    [39] Zhang B H, Sun M X, Yang Y F et al. Rapid, large-scale stimulated Raman histology with strip mosaicing and dual-phase detection[J]. Biomedical Optics Express, 9, 2604-2613(2018).

    [41] Xiong H Q, Shi L X, Wei L et al. Stimulated Raman excited fluorescence spectroscopy and imaging[J]. Nature Photonics, 13, 412-417(2019).

    [42] Wei M, Shi L Y, Shen Y H et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 6608-6617(2019).

    [43] Fu D, Yang W L, Xie X S. Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering[J]. Journal of the American Chemical Society, 139, 583-586(2017).

    [44] Hill A H, Munger E, Francis A T et al. Frequency modulation stimulated Raman scattering microscopy through polarization encoding[J]. The Journal of Physical Chemistry B, 123, 8397-8404(2019).

    Tools

    Get Citation

    Copy Citation Text

    Zhang Bohan, Guo Li, Yao Lie, Zou Xiang, Ji Minbiao. Rapid Histological Imaging Using Stimulated Raman Scattering Microscopy[J]. Chinese Journal of Lasers, 2020, 47(2): 207018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Oct. 10, 2019

    Accepted: --

    Published Online: Feb. 21, 2020

    The Author Email: Minbiao Ji (minbiaoj@fudan.edu.cn)

    DOI:10.3788/CJL202047.0207018

    Topics