Chinese Journal of Lasers, Volume. 43, Issue 4, 402006(2016)
Backward Raman Scattering and Amplification Based on Dual Raman Cells
[1] [1] Zhang Wenhui, Ding Shuanghong, Ding Ze, et al.. A PbWO4 solid-state Raman amplifier excited by 1064 nm nanosecond pulser[J]. Chinese J Lasers, 2014, 41(5): 0502011.
[2] [2] D J Zhou, J W Guo, C H Zhou, et al.. Intracavity CH4 Raman laser using negative-branch unstable resonator[J]. Opt Commun, 2015, 356: 49-53.
[3] [3] X L Cai, C H Zhou, D J Zhou, et al.. H2 stimulated Raman scattering in a multi-pass cell with a Herriott configuration[J]. Chin Phys Lett, 2015, 32(11): 114207.
[4] [4] S H Ding, X Y Zhang, Q P Wang, et al.. Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method [J]. Phys Rev A, 2007, 76(5): 053830.
[5] [5] F F Su, X Y Zhang, W T Wang, et al.. High-efficient diode-pumped actively Q-switched Nd∶YAG/KTP Raman laser at 1096 nm wavelength[J]. Opt Commun, 2013, 305: 201-203.
[6] [6] B S Wang, J Y Peng, J G Miao, et al.. Diode end-pumped passively Q-switched Nd3+∶GdVO4 self-Raman laser at 1176 nm[J]. Chin Phys Lett, 2007, 24(1): 112-114.
[7] [7] Wang Zefeng, Yu Fei, William Wadsworth, et al.. Single-pass high-gain 1.9 μm optical fiber gas Raman laser[J]. Acta Optica Sinica, 2014, 34(8): 0814004.
[8] [8] Cao Kaifa, Huang Jian, Hu Shunxing. Investigation of stimulated Raman scattering characteristics in D2, H2 and D2/H2 mixtures[J]. Acta Optica Sinica, 2015, 35(3): 0319001.
[10] [10] D C Hanna, D J Pointer, D J Pratt. Stimulated Raman-scattering of picosecond light-pulses in hydrogen, deuterium, and methane[J]. IEEE J Quantum Electron, 1983, 22(2): 332-336.
[11] [11] W R Trutna, Y K Park, R L Byer. Dependence of Raman gain on pump laser bandwidth[J]. IEEE J Quantum Electron, 1979, 15(7): 648- 655.
[12] [12] W K Bischel, M J Dyer. Temperature-dependence of the Raman linewidth and line shift for the Q (1) and Q (0) transitions in normal and para-H2[J]. Phys Rev A, 1986, 33(5): 3113-3123.
[13] [13] W P Hooper, G M Frick, B P Michael. Using backward Raman scattering from coupled deuterium cells for wavelength shifting[J]. Opt Eng, 2009, 48(8): 084302.
[15] [15] A Kazzaz, S Ruschin, I Shoshan, et al.. Stimulated Raman scattering in methane-experimental optimization and numerical model[J]. IEEE J Quantum Electron, 1994, 30(12): 3017-3024.
[16] [16] J P Lin, H M Pask, A J Lee, et al.. Study of relaxation oscillations in continuous-wave intracavity Raman lasers[J]. Opt Express, 2010, 18(11): 11530-11536.
[17] [17] D C Parrotta, W Lubeigt, A J Kemp, et al.. Multi-Watt, continuous-wave, tunable diamond Raman laser with intracavity frequency doubling to the visible region[J]. IEEE J Sel Top Quantum Electron, 2013, 19(4): 1400108.
[18] [18] S Marchetti, R Simili, C Gabbanini. Origin of backward to forward wave dominance in broadband Raman scattering in hydrogen[J]. Opt Commun, 2011, 284(1): 441-445.
Get Citation
Copy Citation Text
Zhou Dongjian, Guo Jingwei, Zhou Canhua, Zhao Weili, Liu Jinbo, Liu Dong, Jin Yuqi. Backward Raman Scattering and Amplification Based on Dual Raman Cells[J]. Chinese Journal of Lasers, 2016, 43(4): 402006
Category: Laser physics
Received: Nov. 25, 2015
Accepted: --
Published Online: Apr. 5, 2016
The Author Email: Dongjian Zhou (zhoudj1983@aliyun.com)