Chinese Journal of Lasers, Volume. 43, Issue 4, 402006(2016)

Backward Raman Scattering and Amplification Based on Dual Raman Cells

Zhou Dongjian1,2、*, Guo Jingwei1, Zhou Canhua1, Zhao Weili3, Liu Jinbo1, Liu Dong1,2, and Jin Yuqi1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(18)

    [1] [1] Zhang Wenhui, Ding Shuanghong, Ding Ze, et al.. A PbWO4 solid-state Raman amplifier excited by 1064 nm nanosecond pulser[J]. Chinese J Lasers, 2014, 41(5): 0502011.

    [2] [2] D J Zhou, J W Guo, C H Zhou, et al.. Intracavity CH4 Raman laser using negative-branch unstable resonator[J]. Opt Commun, 2015, 356: 49-53.

    [3] [3] X L Cai, C H Zhou, D J Zhou, et al.. H2 stimulated Raman scattering in a multi-pass cell with a Herriott configuration[J]. Chin Phys Lett, 2015, 32(11): 114207.

    [4] [4] S H Ding, X Y Zhang, Q P Wang, et al.. Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method [J]. Phys Rev A, 2007, 76(5): 053830.

    [5] [5] F F Su, X Y Zhang, W T Wang, et al.. High-efficient diode-pumped actively Q-switched Nd∶YAG/KTP Raman laser at 1096 nm wavelength[J]. Opt Commun, 2013, 305: 201-203.

    [6] [6] B S Wang, J Y Peng, J G Miao, et al.. Diode end-pumped passively Q-switched Nd3+∶GdVO4 self-Raman laser at 1176 nm[J]. Chin Phys Lett, 2007, 24(1): 112-114.

    [7] [7] Wang Zefeng, Yu Fei, William Wadsworth, et al.. Single-pass high-gain 1.9 μm optical fiber gas Raman laser[J]. Acta Optica Sinica, 2014, 34(8): 0814004.

    [8] [8] Cao Kaifa, Huang Jian, Hu Shunxing. Investigation of stimulated Raman scattering characteristics in D2, H2 and D2/H2 mixtures[J]. Acta Optica Sinica, 2015, 35(3): 0319001.

    [10] [10] D C Hanna, D J Pointer, D J Pratt. Stimulated Raman-scattering of picosecond light-pulses in hydrogen, deuterium, and methane[J]. IEEE J Quantum Electron, 1983, 22(2): 332-336.

    [11] [11] W R Trutna, Y K Park, R L Byer. Dependence of Raman gain on pump laser bandwidth[J]. IEEE J Quantum Electron, 1979, 15(7): 648- 655.

    [12] [12] W K Bischel, M J Dyer. Temperature-dependence of the Raman linewidth and line shift for the Q (1) and Q (0) transitions in normal and para-H2[J]. Phys Rev A, 1986, 33(5): 3113-3123.

    [13] [13] W P Hooper, G M Frick, B P Michael. Using backward Raman scattering from coupled deuterium cells for wavelength shifting[J]. Opt Eng, 2009, 48(8): 084302.

    [15] [15] A Kazzaz, S Ruschin, I Shoshan, et al.. Stimulated Raman scattering in methane-experimental optimization and numerical model[J]. IEEE J Quantum Electron, 1994, 30(12): 3017-3024.

    [16] [16] J P Lin, H M Pask, A J Lee, et al.. Study of relaxation oscillations in continuous-wave intracavity Raman lasers[J]. Opt Express, 2010, 18(11): 11530-11536.

    [17] [17] D C Parrotta, W Lubeigt, A J Kemp, et al.. Multi-Watt, continuous-wave, tunable diamond Raman laser with intracavity frequency doubling to the visible region[J]. IEEE J Sel Top Quantum Electron, 2013, 19(4): 1400108.

    [18] [18] S Marchetti, R Simili, C Gabbanini. Origin of backward to forward wave dominance in broadband Raman scattering in hydrogen[J]. Opt Commun, 2011, 284(1): 441-445.

    CLP Journals

    [1] Du Yanxiong, Yang Jinbo, Lü Qingxian, Yan Hui. Application of Quantum Shortcut to Adiabaticity in Stimulated Raman Adiabatic Transfer[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120002

    Tools

    Get Citation

    Copy Citation Text

    Zhou Dongjian, Guo Jingwei, Zhou Canhua, Zhao Weili, Liu Jinbo, Liu Dong, Jin Yuqi. Backward Raman Scattering and Amplification Based on Dual Raman Cells[J]. Chinese Journal of Lasers, 2016, 43(4): 402006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser physics

    Received: Nov. 25, 2015

    Accepted: --

    Published Online: Apr. 5, 2016

    The Author Email: Dongjian Zhou (zhoudj1983@aliyun.com)

    DOI:10.3788/cjl201643.0402006

    Topics