Laser & Optoelectronics Progress, Volume. 54, Issue 2, 20003(2017)

Research Progress on Rare Earth Ions Doped Chalcogenide Fiber for Mid-Infrared Luminescence

Liu Zijun1,2、*, Bian Junyi1,2, Huang Yan1,2, Xu Tiefeng1,2, Wang Xunsi1,2, and Dai Shixun1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(49)

    [1] [1] Sorokina I T, Vodopyanov K L. Solid-state mid-infrared laser sources[M]. New York: Springer, 2003: 1-408.

    [2] [2] Guo Haitao, Lu Min, Tao Guangming, et al. Research progress of rare earth ions doped chalcogenide glasses for mid-infrared luminescence[J]. Journal of Chinese Ceramic Socierty, 2009, 37(12): 2150-2156.

    [3] [3] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423-431.

    [4] [4] Shen Yanlong, Huang Ke, Zhou Songqing, et al. 10 W-level high efficiency single-mode mid-infrared 2.8 μm fiber laser[J]. Chinese J Lasers, 2015, 42(5): 0502008.

    [5] [5] Xu Hang, Dai Shixun, Zhang Peiqing, et al. Research progress in chalcogenide glass Raman fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(3): 030004.

    [6] [6] Li Chenghan, Wang Li, Gan Yulin, et al. Structural analysis of GexAsySe1-x-y chalcogenide glass thin-films by Raman spectroscopy[J]. Laser & Optoelectronics Progress, 2016, 53(2): 023101.

    [7] [7] Ye C C, Hewak D W, Hempstead M, et al.Spectral properties of Er3+-doped gallium lanthanum sulphide glass[J]. Journal of Non-Crystalline Solids, 1996, 208(1-2): 56-63.

    [8] [8] Hu J, Menyuk C R, Wei C, et al. Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers[J]. Optics Letters, 2015, 40(16): 3687-3690.

    [9] [9] Peng Yapei, Jiang Benxue, Fan Jintai, et al. Review of mid-infrared laser materials directly pumped by laser-diode[J]. Laser & Optoelectronics Progress, 2015, 52(2): 020001.

    [10] [10] Layne C B, Weber M J. Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass[J]. Physical Review B: Condens Matter, 1977, 16(7): 3259-3261.

    [11] [11] Sanghera J S, Shaw L B, Aggarwal I D. Chalcogenide glass-fiber-based mid-IR sources and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 114-119.

    [12] [12] Lu C, Guo H, Xu Y, et al. Mid-infrared emissions of Pr3+-doped GeS2-Ga2S3-CdI2 chalcohalide glasses[J]. Material Research Bulletin, 2014, 60: 391-396.

    [13] [13] Moizan V, Nazabal V, Troles J, et al. Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy[J]. Optical Material, 2008, 31(1): 39-46.

    [14] [14] Zhu Jun, Dai Shixun, Peng Bo, et al. Mid-infrared emission properties of Ho3+-doped Ge-Ga-S-CsI glasses[J]. Journal of Inorganic Materials, 2010, 25(5): 546-550.

    [15] [15] Tang Z, Zhu H, Beres'-Pawlik E, et al. Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+[J]. Optical Materials Express, 2012, 2(11): 1632-1640.

    [17] [17] Dai Shixun, Peng Bo, Le Fangda, et al. Mid-infrared emission properties of Dy3+-doped Ge-Ga-S-CsI glasses[J]. Acta Physica Sinica, 2010, 59(5): 3547-3553.

    [18] [18] Ohishi Y, Mori A, Kanamori T, et al. Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3 μm fiber amplifiers[J]. Applied Physics Letters, 1994, 65(1): 13-15.

    [19] [19] Mori A, Ohishi Y, Kanamori T, et al. Optical amplification with neodymium-doped chalcogenide glass fiber[J]. Applied Physics Letters, 1997, 70(10): 1230-1232.

    [20] [20] Samson B N, Schweizer T, Moore R C, et al. Neodymiumdoped chalcogenide glass fibre laser[C]. Conference on Lasers and Electro-Optics, CLEO/Pacific Rim, 1997: 51-52.

    [21] [21] Schweizer T, Brady D, and Hewak D W. Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications[J]. Optics Express, 1997, 1(4): 102-107.

    [22] [22] Shaw L B, Schaafsma D T, Cole B J, et al. Rare-earth-doped glass fibers as infrared sources for IRSS[C]. SPIE, 1998, 3368: 42-47.

    [23] [23] Sójka L, Tang Z, Furniss D, et al. Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad[J]. Optical Material, 2014, 36(6): 1076-1082.

    [24] [24] Tang Z, Furniss D, Fay M, et al. Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass[J]. Optical Materials Express, 2015, 5(4): 870-886.

    [25] [25] Galstyan A, Messaddeq S, Fortin V, et al. Tm3+ doped Ga-As-S chalcogenide glasses and fibers[J]. Optical Materials, 2015, 47: 518-523.

    [26] [26] Furniss D, Sakr H, Tang Z, et al. Development of praseodymium-doped, selenide chalcogenide glass, step-index fibre towards mid-infrared fibre lasers[C]. 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014: 1-4.

    [27] [27] Sakr H, Furniss D, Tang Z, et al. Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber[J]. Optics Express, 2014, 22(18): 21236-21252.

    [28] [28] Charpentier F, Starecki F, Doualan J L, et al. Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers[J]. Materials Letters, 2013, 101(1): 21-24.

    [29] [29] Sójka, Tang Z, Zhu H, et al. Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+[J]. Optical Materials Express, 2012, 2(11): 1632-1640.

    [30] [30] Sujecki S, Sójka L, Beres'-Pawlik E, et al. Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation[J]. Optical Quantum Electronics, 2010, 42(2): 69-79.

    [31] [31] Prudenzano F, Mescia L, Allegretti L A, et al. Design of Er3+-doped chalcogenide glass laser for MID-IR application[J]. Journal of Non-Crystalline Solids, 2009, 355(18-21): 1145-1148.

    [32] [32] Quimby R S, Shaw L B, Sanghera J S, et al. Modeling of cascade lasing in Dy: Chalcogenide glass fiber laser with efficient output at 4.5 μm[J]. Photonics Technology Letters IEEE, 2008, 20(2): 123-125.

    [33] [33] Cole B, Sanghera J, Shaw B, et al. Low phonon energy glass and fiber doped with a rare earth: US6128429A[P]. 2000-10-03.

    [34] [34] Aggarwal I D, Sanghera J S. Development and applications of chalcogenide glass optical fibers at NRL[J]. Journal of Optoelectronics and Advanced Materials, 2002, 4(3): 251-274.

    [35] [35] Sanghera J S, Aggarwal I D. Active and passive chalcogenide glass optical fibers for IR applications: A review[J]. Journal of Non-Crystalline Solids, 1999, 256-257: 6-16.

    [36] [36] Schweizer T, Brady D, Hewak D W. Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications[J]. Optics Express, 1997, 1(4): 102-107.

    [37] [37] Shiryaev V S, Velmuzhov A P, Tang Z Q, et al. Preparation of high purity glasses in the Ga-Ge-As-Se system[J]. Optical Materials, 2014, 37: 18-23.

    [38] [38] Snopatin G E, Shiryaev V S, Plotnichenko V G, et al. High-purity chalcogenide glasses for fiber optics[J]. Inorganic Materials, 2009, 45(13): 1439-1460.

    [39] [39] Sanghera J S, Busse L E, Aggarwal I D. Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared[J]. Journal of Applied Physics, 1994, 75(10): 4885-4891.

    [40] [40] Sanghera J S, Aggarwal I D, Busse L E, et al. Development of low-loss IR transmitting chalcogenide glass fibers[C]. SPIE, 1995, 2396: 71-77.

    [41] [41] Zhang X H, Ma H L, Fonteneau G, et al. Improvement of tellurium halide glasses for IR fiber optics[J]. Journal of Non-Crystalline Solids, 1992, 140: 47-51.

    [42] [42] Furniss D, Seddon A B. Towards monomode proportioned fibreoptic preforms by extrusion[J]. Journal of Non-Crystalline Solids, 1999, 256-257: 232-236.

    [43] [43] Sun Y N, Dai S X, Zhang P Q, et al. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures[J]. Optics Express, 2015, 23(18): 23472-23483.

    [44] [44] Yang Z, Luo T, Jiang S, et al. Single-mode low-loss optical fibers for long-wave infrared transmission[J]. Optics Letters, 2010, 35(20): 3360-3362.

    [45] [45] El-Amraoui M, Gadret G, Jules J C, et al. Microstructured chalcogenide optical fibers from As2S3 glass: Towards new IR broadband sources[J]. Optics Express, 2010, 18(25): 26655-26665.

    [46] [46] Monro T M, West Y D, Hewak D W, et al. Chalcogenide holey fibres[J]. Electronics Letters, 2000, 36(24): 1998-2000.

    [47] [47] Brilland L, Smektala F, Renversez G, et al. Fabrication of complex structures of holey fibers in chalcogenide glass[J]. Optics Express, 2006, 14(3): 1280-1285.

    [48] [48] Coulombier Q, Brilland L, Houizot P, et al. Casting method for producing low-loss chalcogenide microstructured optical fibers[J]. Optics Express, 2010, 18(9): 9107-9112.

    [49] [49] Tang J, Liu S, Zhu Q, et al. As40S59Se1/As2S3 step index fiber for 1-5 μm supercontinuum generation[J]. Journal of Non-Crystalline Solids, 2016, 450: 61-65.

    CLP Journals

    [1] Yu Qiushuang, Zhang Xiaoyu, Zhang Zhiping. Research Progress of Chalcogenide Glasses with Third-Order Optical Nonlinearity[J]. Laser & Optoelectronics Progress, 2018, 55(8): 80003

    Tools

    Get Citation

    Copy Citation Text

    Liu Zijun, Bian Junyi, Huang Yan, Xu Tiefeng, Wang Xunsi, Dai Shixun. Research Progress on Rare Earth Ions Doped Chalcogenide Fiber for Mid-Infrared Luminescence[J]. Laser & Optoelectronics Progress, 2017, 54(2): 20003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 2, 2016

    Accepted: --

    Published Online: Feb. 10, 2017

    The Author Email: Liu Zijun (liuzijun@nbu.edu.cn)

    DOI:10.3788/lop54.020003

    Topics