International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 42008(2025)
Laser-assisted manufacturing for sensors
[1] [1] Yang Y Q, Guo X G, Zhu M L, Sun Z D, Zhang Z X, He T Y Y and Lee C. 2023. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth.Adv. Energy Mater.13, 2203040.
[2] [2] Li P et al. 2023. Inhibitory effect of zinc oxide nanorod arrays on breast cancer cells profiled through real-time cytokines screening by a single-cell microfluidic platform.BMEMat1, e12040.
[3] [3] Xin D et al. 2024. Laser-processed lithium niobate wafer for pyroelectric sensor.InfoMat6, e12557.
[4] [4] Xu N, Lin X D, Han J and Sun Q J. 2024. Sustainable paper electronics and neuromorphic paper chip.Nanotechnology35, 222501.
[5] [5] Yang D, Tian G, Chen J, Liu Y, Fatima E, Qiu J, Malek N A N N and Qi D. 2025. Neural electrodes for brain-computer interface system: from rigid to soft.BMEMate12130.
[6] [6] Chiani M, Giorgetti A and Paolini E. 2018. Sensor radar for object tracking.Proc. IEEE106, 1022–1041.
[7] [7] Lu Y et al. 2023. Smart batteries enabled by implanted flexible sensors.Energy Environ. Sci.16, 2448–2463.
[8] [8] Sui X Y, Downing J R, Hersam M C and Chen J H. 2021. Additive manufacturing and applications of nanomaterialbased sensors.Mater. Today48, 135–154.
[9] [9] Wang D M, Xiao X Q, Xu S, Liu Y and Li Y X. 2018. Electrochemical aptamer-based nano-sensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay.Biosens. Bioelectron.99, 431–437.
[10] [10] Mayer M and Baeumner A J. 2019. A megatrend challenging analytical chemistry: biosensor and chemosensor concepts ready for the internet of things.Chem. Rev.119, 7996–8027.
[11] [11] Potyrailo R A. 2016. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet.Chem. Rev.116, 11877–11923.
[12] [12] Wang C, Quan J M, Liu L P, Cao P L, Ding K W, Ding Y L, Jia X S, Yan D J, Lin N and Duan J A. 2024. A rigid–soft hybrid paper-based flexible pressure sensor with an ultrawide working range and frequency bandwidth.J. Mater. Chem.A12, 13994–14004.
[13] [13] Wu H S, Wang C, Liu L P, Liu Z L, He J H, Zhang C C and Duan J N. 2025. Bioinspired stretchable strain sensor with high linearity and superhydrophobicity for underwater applications.Adv. Funct. Mater.35, 2413552.
[14] [14] Chen D, Zhang T, Geng W, Sun D H, Liu X Y, Li Y, Liu H and Zhou W J. 2022. An intelligent tactile sensor based on interlocked carbon nanotube array for ultrasensitive physiological signal detection and real-time monitoring.Adv. Mater. Technol.7, 2200290.
[15] [15] Zhang S et al. 2021. High-performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre-seeding strategy.InfoMat3, 1455–1469.
[16] [16] Cheng Q L et al. 2020. WSe2 2D p-type semiconductor-based electronic devices for information technology: design, preparation, and applications.InfoMat2, 656–697.
[17] [17] Niu H S, Gao S, Yue W J, Li Y, Zhou W J and Liu H. 2020. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure.Small16, 1904774.
[18] [18] Hou B and Liu X. 2023. Stretching boundaries in neurophysiological monitoring.BMEMat1, e12054.
[19] [19] Wang J, Xu S Y, Zhang C C, Yin A L, Sun M Y, Yang H R, Hu C G and Liu H. 2023. Field effect transistor-based tactile sensors: from sensor configurations to advanced applications.InfoMat5, e12376.
[20] [20] Zhao M L, Kim D, Lee Y H, Yang H and Cho S. 2023. Quantum sensing of thermoelectric power in lowdimensional materials.Adv. Mater.35, 2106871.
[21] [21] Hao J, Malek N A N N, Kamaruddin W H A and Li J. 2024. Breaking piezoelectric limits of molecules for biodegradable implants.BMEMat2, e12087.
[22] [22] Hassan J Z, Raza A, Din Babar Z U, Qumar U, Kaner N T and Cassinese A. 2023. 2D material-based sensing devices: an update.J. Mater. Chem.A11, 6016–6063.
[23] [23] Huang X, Bu T Z, Zheng Q Y, Liu S Y, Li Y Y, Fang H, Qiu Y Q, Xie B, Yin Z P and Wu H. 2024. Flexible sensors with zero Poisson’s ratio.Natl Sci. Rev.11, nwae027.
[24] [24] Han S T, Peng H Y, Sun Q J, Venkatesh S, Chung K S, Lau S C, Zhou Y and Roy V A L. 2017. An overview of the development of flexible sensors.Adv. Mater.29, 1700375.
[25] [25] Pirzada M and Altintas Z. 2022. Nanomaterials for virus sensing and tracking.Chem. Soc. Rev.51, 5805–5841.
[26] [26] Ates H C, Nguyen P Q, Gonzalez-Macia L, Morales-Narvez E, Gder F, Collins J J and Dincer C. 2022. Endto-end design of wearable sensors.Nat. Rev. Mater.7, 887–907.
[27] [27] Kim K R and Yeo W-H. 2023. Advances in sensor developments for cell culture monitoring.BMEMat1, e12047.
[28] [28] Nittala A S, Karrenbauer A, Khan A, Kraus T and Steimle J. 2021. Computational design and optimization of electrophysiological sensors.Nat. Commun.12, 6351.
[29] [29] Li X T et al. 2023. Review on carbon dots: synthesis and application in biology field.BMEMat1, e12045.
[30] [30] Xiao M, Zheng S, Shen D Z, Duley W W and Zhou Y N. 2020. Laser-induced joining of nanoscale materials: processing, properties, and applications.Nano Today35, 100959.
[31] [31] Li Y and Hong M H. 2020. Parallel laser micro/nanoprocessing for functional device fabrication.Laser Photon. Rev.14, 1900062.
[32] [32] Wang S et al. 2023. Responsive hydrogel dressings for intelligent wound management.BMEMat1, e12021.
[33] [33] Zhang S L, Zhi S S, Wang H J, Guo J, Sun W H, Zhang L, Jiang Y, Zhang X G, Jiang K and Wu D P. 2023. Laserassisted rapid synthesis of anatase/rutile TiO2 heterojunction with Function-specified micro-zones for the effective photo-oxidation of sulfamethoxazole.Chem. Eng. J.453, 139702.
[34] [34] Devi M, Wang H Z, Moon S, Sharma S and Strauss V. 2023. Laser-carbonization—a powerful tool for micro-fabrication of patterned electronic carbons.Adv. Mater.35, 2211054.
[35] [35] Tang J, Yi W D, Zhong X W, Zhang C F, Xiao X, Pan F and Xu B M. 2020. Laser writing of the restacked titanium carbide MXene for high performance supercapacitors.Energy Storage Mater.32, 418–424.
[36] [36] Zhu J B, Huang X and Song W X. 2021. Physical and chemical sensors on the basis of laser-induced graphene: mechanisms, applications, and perspectives.ACS Nano15, 18708–18741.
[37] [37] Wang X M, Chai Y J, Zhu C C, Yu J B and Chen X P. 2022. Ultrasensitive and self-alarm pressure sensor based on laser-induced graphene and sea urchin-shaped Fe2O3 sandwiched structure.Chem. Eng. J.448, 137664.
[38] [38] Li K et al. 2022. Stretchable broadband photo-sensor sheets for nonsampling, source-free, and label-free chemical monitoring by simple deformable wrapping.Sci. Adv.8, eabm4349.
[39] [39] Zhang C H, Dong H Y, Zhang C, Fan Y Q, Yao J N and Zhao Y S. 2021. Photonic skins based on flexible organic microlaser arrays.Sci. Adv.7, eabh3530.
[40] [40] Kim D C, Yun H, Kim J, Seung H, Yu W S, Koo J H, Yang J, Kim J H, Hyeon T and Kim D H. 2021. Three-dimensional foldable quantum dot light-emitting diodes.Nat. Electron.4, 671–680.
[41] [41] Li Q, Bai R J, Gao Y, Wu R Y, Ju K, Tan J P and Xuan F Z. 2021. Laser direct writing of flexible sensor arrays based on carbonized carboxymethylcellulose and its composites for simultaneous mechanical and thermal stimuli detection.ACS Appl. Mater. Interfaces13, 10171–10180.
[42] [42] Zuo J X and Lin X C. 2022. High-power laser systems.Laser Photon. Rev.16, 2100741.
[43] [43] Dong T J et al. 2023. Ru decorated TiOx nanoparticles via laser bombardment for photothermal co-catalytic CO2 hydrogenation to methane with high selectivity.Appl. Catal.B326, 122176.
[44] [44] Dobbelstein H, George E P, Gurevich E L, Kostka A, Ostendorf A and Laplanche G. 2021. Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization.Int. J. Extrem. Manuf.3, 015201.
[45] [45] Zhao L L, Liu Z, Chen D, Liu F, Yang Z Y, Li X, Yu H H, Liu H and Zhou W J. 2021. Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage.Nanomicro Lett.13, 49.
[46] [46] Pinheiro T, Morais M, Silvestre S, Carlos E, Coelho J, Almeida H V, Barquinha P, Fortunato E and Martins R. 2024. Direct laser writing: from materials synthesis and conversion to electronic device processing.Adv. Mater.36, 2402014.
[47] [47] Xu Y D, Fei Q H, Page M, Zhao G G, Ling Y, Chen D and Yan Z. 2021. Laser-induced graphene for bioelectronics and soft actuators.Nano Res.14, 3033–3050.
[48] [48] You R, Liu Y Q, Hao Y L, Han D D, Zhang Y L and You Z. 2020. Laser fabrication of graphene-based flexible electronics.Adv. Mater.32, 1901981.
[49] [49] Huang L B, Su J J, Song Y and Ye R Q. 2020. Laser-induced graphene: en route to smart sensing.Nanomicro Lett.12, 157.
[50] [50] Hu X J, Huang J C, Wei Y Z, Zhao H Y, Lin S Z, Hu C X, Wang Z, Zhao Z and Zang X J. 2022. Laser direct-write sensors on carbon-fiber-reinforced poly-etherether-ketone for smart orthopedic implants.Adv. Sci.9, 2105499.
[51] [51] Liu K L, Ding H B, Chong Z J, Zeng Y, Niu Y F, Zhang J N, Kang Y L, Du X and Gu Z Z. 2024. Direct laser writing photonic crystal hydrogel sensors forin-situsensing in microfluidic device.Chem. Eng. J.482, 148679.
[52] [52] Salvatore G A et al. 2017. Biodegradable and highly deformable temperature sensors for the internet of things.Adv. Funct. Mater.27, 1702390.
[53] [53] Bathaei M J, Singh R, Mirzajani H, Istif E, Akhtar M J, Abbasiasl T and Beker L. 2023. Photolithography-based microfabrication of biodegradable flexible and stretchable sensors.Adv. Mater.35, 2207081.
[54] [54] Shi H Y, Al-Rubaiai M, Holbrook C M, Miao J S, Pinto T, Wang C and Tan X B. 2019. Screen-printed soft capacitive sensors for spatial mapping of both positive and negative pressures.Adv. Funct. Mater.29, 1809116.
[55] [55] Kim D S, Jeong J M, Park H J, Kim Y K, Lee K G and Choi B G. 2021. Highly concentrated, conductive, defectfree graphene ink for screen-printed sensor application.Nanomicro Lett.13, 87.
[56] [56] Kilic T, Gessner I, Cho Y K, Jeong N, Quintana J, Weissleder R and Lee H. 2022. Zwitterionic polymer electroplating facilitates the preparation of electrode surfaces for biosensing.Adv. Mater.34, 2107892.
[57] [57] Zhao J X et al. 2022. Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system.Nano Energy93, 106893.
[58] [58] Choi E J, Drago N P, Humphrey N J, van Houten J, Ahn J, Lee J, Kim I D, Ogata A F and Penner R M. 2023. Electrodeposition-enabled, electrically-transduced sensors and biosensors.Mater. Today62, 129–150.
[59] [59] Carou-Senra P, Rodrguez-Pombo L, Awad A, Basit A W, Alvarez-Lorenzo C and Goyanes A. 2024. Inkjet printing of pharmaceuticals.Adv. Mater.36, 2309164.
[60] [60] Winkless L. 2023. Inkjet-printed BPA sensors show promise for use in food safety.Mater. Today69, 15–16.
[61] [61] Chen P F, Qin L F, Ma Z H, Zeng T, Xie Y, Zhang C, Luo T, Zhou W and Zhang J H. 2024. A hybrid tactile sensor enabling full-bandwidth and ultra high-sensitivity sensing using a stress regulator.Nano Energy131, 110264.
[62] [62] Zhou S X, Zhao Y J, Xun Y R, Wei Z C, Yang Y, Yan W T and Ding J. 2024. Programmable and modularized gas sensor integrated by 3D printing.Chem. Rev.124, 3608–3643.
[63] [63] Liu X J, Wei M X, Wang Q, Tian Y J, Han J M, Gu H C, Ding H B, Chen Q, Zhou K and Gu Z Z. 2021. Capillaryforce-driven self-assembly of 4D-printed microstructures.Adv. Mater.33, 2100332.
[64] [64] Sasaki Y, Kubota R and Minami T. 2021. Molecular self-assembled chemosensors and their arrays.Coord. Chem. Rev.429, 213607.
[65] [65] Trung T N, Kim D O, Lee J H, Dao V D, Choi H S and Kim E T. 2017. Simple and reliable lift-off patterning approach for graphene and graphene–ag nanowire hybrid films.ACS Appl. Mater. Interfaces9, 21406–21412.
[66] [66] Torres Alonso E, Shin D W, Rajan G, Neves A I S, Russo S and Craciun M F. 2019. Water-based solution processing and wafer-scale integration of all-graphene humidity sensors.Adv. Mater.6, 1802318.
[67] [67] Kuo L D et al. 2022. All-printed ultrahigh-responsivity MoS2 nanosheet photodetectors enabled by megasonic exfoliation.Adv. Mater.34, 2203772.
[68] [68] Pang Y, Han X L, Yang Z, Li Y X, Yang Y and Ren T L. 2019. Graphene-based wearable sensors for physiological signal monitoring.Proceedings 2019 IEEE International Conference on Electron Devices and Solid-State Circuits(IEEE) pp 1–3.
[69] [69] Kim K K, Ha I, Kim M, Choi J, Won P, Jo S and Ko S H. 2020. A deep-learned skin sensor decoding the epicentral human motions.Nat. Commun.11, 2149.
[70] [70] Xu P F, Wang S J, Lin A, Min H K, Zhou Z F, Dou W K, Sun Y, Huang X, Tran H and Liu X Y. 2023. Conductive and elastic bottlebrush elastomers for ultrasoft electronics.Nat. Commun.14, 623.
[71] [71] Yang Q S et al. 2022. High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems.Nat. Commun.13, 6518.
[72] [72] Tavakoli M, Alhais Lopes P, Hajalilou A, Silva A F, Reis Carneiro M, Carvalheiro J, Marques Pereira J and de Almeida A T. 2022. 3R electronics: scalable fabrication of resilient, repairable, and recyclable soft-matter electronics.Adv. Mater.34, 2203266.
[73] [73] Wang W, Han B, Zhang Y, Li Q, Zhang Y L, Han D D and Sun H B. 2021. Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect.Adv. Funct. Mater.31, 2006179.
[74] [74] Wu H et al. 2020. Ultrathin and high-stress-resolution liquidmetal-based pressure sensors with simple device structures.ACS Appl. Mater. Interfaces12, 55390–55398.
[75] [75] Vercillo V, Tonnicchia S, Romano J M, Garca-girn A, Aguilar-morales A I, Alamri S, Dimov S S, Kunze T, Lasagni A F and Bonaccurso E. 2020. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications.Adv. Funct. Mater.30, 1910268.
[76] [76] Zheng B D, Zhao G G, Yan Z, Xie Y C and Lin J. 2023. Direct freeform laser fabrication of 3D conformable electronics.Adv. Funct. Mater.33, 2210084.
[77] [77] Yu H Y, Gai M X, Liu L, Chen F R, Bian J and Huang Y A. 2023. Laser-induced direct graphene patterning: from formation mechanism to flexible applications.Soft Sci.3, 4.
[78] [78] Le T S D et al. 2022. Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics.Adv. Funct. Mater.32, 2205158.
[79] [79] Amirghasemi F, Al-Shami A, Ushijima K and Mousavi M P S. 2024. Flexible acetylcholine neural probe with a hydrophobic laser-induced graphene electrode and a fluorous-phase sensing membrane.ACS Mater. Lett.6, 4158–4167.
[80] [80] Cai M H, Yao H X, Li M N, Yan Y, Cao Y, Li J X, Su H Y, Zhang W W, Zhu H and Cui F Y. 2024. Copper ferrite nanoparticles anchored laser-induced graphene as novel nanoenzyme for the electrochemical catalyzing and sensing of -estradiol in serum.Chem. Eng. J.492, 152148.
[81] [81] Cao T, Ding X Y, Peng Q W, Zhang M and Shi G Y. 2024. Intelligent laser-induced graphene sensor for multiplex probing catechol isomers.Chin. Chem. Lett.35, 109238.
[82] [82] Guo J J, Liu X Q, Sun Z S, Zheng X Q, Sung H K, Yao Z, Li Y and Li Y. 2024. An intelligent dual-sensing e-skin system for pressure and temperature detection using laserinduced graphene and polydimethylsiloxane.Mater. Des.238, 112640.
[83] [83] Mao L N, Pan T S, Lin L, Ke Y Z, Su H J, Li Y, Huang W, Li T and Lin Y. 2024. Simultaneously enhancing sensitivity and operation range of flexible pressure sensor by constructing a magnetic-guided microstructure in laser-induced graphene composite.Chem. Eng. J.481, 148639.
[84] [84] Huang L B et al. 2023. Ultrasensitive, fast-responsive, directional airflow sensing by bioinspired suspended graphene fibers.Nano Lett.23, 597–605.
[85] [85] Lin J, Peng Z W, Liu Y Y, Ruiz-Zepeda F, Ye R Q, Samuel E L G, Yacaman M J, Yakobson B I and Tour J M. 2014. Laser-induced porous graphene films from commercial polymers.Nat. Commun.5, 5714.
[86] [86] Cheng L et al. 2024. Flash healing of laser-induced graphene.Nat. Commun.15, 2925.
[87] [87] Wang H M et al. 2020. Laser writing of janus graphene/kevlar textile for intelligent protective clothing.ACS Nano14, 3219–3226.
[88] [88] Xu K C, Fujita Y, Lu Y Y, Honda S, Shiomi M, Arie T, Akita S and Takei K. 2021. A wearable body condition sensor system with wireless feedback alarm functions.Adv. Mater.33, 2008701.
[89] [89] Kim D, Chhetry A, Zahed A, Sharma S, Jeong S, Song H and Park J Y. 2023. Highly sensitive and reliable piezoresistive strain sensor based on cobalt nanoporous carbon-incorporated laser-induced graphene for smart healthcare wearables.ACS Appl. Mater. Interfaces15, 1475–1485.
[90] [90] Liu Y, Lin L H and Sun H B. 2024. Optical modification of two-dimensional materials: from atomic to electronic scale.J. Phys. Chem.C128, 2271–2290.
[91] [91] Emelianov A V, Pettersson M and Bobrinetskiy I I. 2024. Ultrafast laser processing of 2D materials: novel routes to advanced devices.Adv. Mater.36, 2402907.
[92] [92] Bai M H et al. 2024. An effective strategy for synthesizing high-performance photocatalyst by recycling the graphite target wastes.J. Environ. Chem. Eng.12, 113872.
[93] [93] Guan Y C, Chen M X, Ding Y, Fang Y Q, Huang F Q, Xu C Y, Zhen L, Li Y, Yang L J and Xu P. 2024. Phase transformation on multilayer 2M-WS2 for improved surface-enhanced raman scattering.ACS Nano18, 17339–17348.
[94] [94] Liu X, Fang L, Zhang F Y, Zhang Q W, Wan Z F and Chen X. 2024. All-optical diffractive deep neural networks enabled laser-reduced graphene oxide tactile sensor for braille recognition.ACS Appl. Electron.6, 2049–2058.
[95] [95] Della Pelle F, Bukhari Q U A, Alvarez Diduk R, Scroccarello A, Compagnone D and Merkoi A. 2023. Freestanding laser-induced two dimensional heterostructures for self-contained paper-based sensors.Nanoscale15, 7164–7175.
[96] [96] Rodriguez R D et al. 2022. Laser-engineered multifunctional graphene-glass electronics.Adv. Mater.34, 2206877.
[97] [97] Yuan Y J, Jiang L, Li X, Zuo P, Zhang X Q, Lian Y L, Ma Y L, Liang M S, Zhao Y and Qu L T. 2022. Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitors.Adv. Mater.34, 2110013.
[98] [98] Dreimol C H, Guo H Z, Ritter M, Keplinger T, Ding Y, Gnther R, Poloni E, Burgert I and Panzarasa G. 2022. Sustainable wood electronics by iron-catalyzed laserinduced graphitization for large-scale applications.Nat. Commun.13, 3680.
[99] [99] Yang L et al. 2023. Vanadium oxide-doped laser-induced graphene multi-parameter sensor to decouple soil nitrogen loss and temperature.Adv. Mater.35, 2210322.
[100] [100] Zhang C J, Li Z K, Li H Y, Yang Q, Wang H, Shan C, Zhang J Z, Hou X and Chen F. 2022. Femtosecond laserinduced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor.ACS Appl. Mater. Interfaces14, 38328–38338.
[101] [101] Hui X, Sharma S, Sharifuzzaman M, Zahed M A, Shin Y D, Seonu S K, Song H S and Park J Y. 2022. Siloxenefunctionalized laser-induced graphene via C-O-Si bonding for high-performance heavy metal sensing patch applications.Small18, 2201247.
[102] [102] Shin J, Ko J, Jeong S, Won P, Lee Y, Kim J, Hong S, Jeon N L and Ko S H. 2021. Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis.Nat. Mater.20, 100–107.
[103] [103] Wang R R, Zheng M L, Zhang W C, Liu J, Li T, Dong X Z and Jin F. 2022. Micropattern of silver/polyaniline core–shell nanocomposite achieved by maskless optical projection lithography.Nano Lett.22, 9823–9830.
[104] [104] Li X X and Guan Y C. 2020. Theoretical fundamentals of short pulse laser–metal interaction: a review.Nanotechnol. Precis. Eng.3, 105–125.
[105] [105] Stockinger T et al. 2021. iSens: a fiber-based, highly permeable and imperceptible sensor design.Adv. Mater.33, 2102736.
[106] [106] Wang B L et al. 2021. Ultrafast, kinetically limited, ambient synthesis of vanadium dioxides through laser direct writing on ultrathin chalcogenide matrix.ACS Nano15, 10502–10513.
[107] [107] Yu S Y, Schrodj G, Mougin K, Dentzer J, Malval J P, Zan H W, Soppera O and Spangenberg A. 2018. Direct laser writing of crystallized TiO2 and TiO2/carbon microstructures with tunable conductive properties.Adv. Mater.30, 1805093.
[108] [108] Yu Y, Naik S S, Oh Y, Theerthagiri J, Lee S J and Choi M Y. 2021. Lignin-mediated green synthesis of functionalized gold nanoparticles via pulsed laser technique for selective colorimetric detection of lead ions in aqueous media.J. Hazard. Mater.420, 126585.
[109] [109] Bang J, Jung Y, Kim H, Kim D, Cho M and Ko S H. 2022. Multi-bandgap monolithic metal nanowire percolation network sensor integration by reversible selective laserinduced redox.Nanomicro Lett.14, 49.
[110] [110] Chen X, Assadsangabi B, Hsiang Y and Takahata K. 2018. Enabling angioplasty-ready “smart” stents to detect in-stent restenosis and occlusion.Adv. Sci.5, 1700560.
[111] [111] Herbert R, Lim H R, Rigo B and Yeo W H. 2022. Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics.Sci. Adv.8, eabm1175.
[112] [112] Kim M J, Yun T G, Noh J Y, Song Z Q, Kim H R, Kang M J and Pyun J C. 2021. Laser-induced surface reconstruction of nanoporous au-modified TiO2 nanowires forin situperformance enhancement in desorption and ionization mass spectrometry.Adv. Funct. Mater.31, 2102475.
[113] [113] Liu S F, Hou Z W, Lin L H, Li F, Zhao Y, Li X Z, Zhang H, Fang H H, Li Z C and Sun H B. 2022. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding.Science377, 1112–1116.
[114] [114] Wu H Z, Luo R Y, Li Z F, Tian Y J, Yuan J Y, Su B, Zhou K, Yan C Z and Shi Y S. 2024. Additively manufactured flexible liquid metal–coated self-powered magnetoelectric sensors with high design freedom.Adv. Mater.36, 2307546.
[115] [115] Hong S et al. 2021. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry.Nat. Commun.12, 3559.
[116] [116] Wang X W, Wang B L, Wu Y H, Wang E Z, Luo H, Sun Y F, Fu D Y, Sun Y H and Liu K. 2021. Two-dimensional lateral heterostructures made by selective reaction on a patterned monolayer MoS2 matrix.ACS Appl. Mater. Interfaces13, 26143–26151.
[117] [117] Park S, Lee A, Choi K H, Hyeong S K, Bae S, Hong J M, Kim T W, Hong B H and Lee S K. 2020. Layerselective synthesis of MoS2 and WS2 structures under ambient conditions for customized electronics.ACS Nano14, 8485–8494.
[118] [118] Zhao G G et al. 2022. Laser-scribed conductive, photoactive transition metal oxide on soft elastomers for Janus on-skin electronics and soft actuators.Sci. Adv.8, eabp9734.
[119] [119] Yang X, Tang S J, Meng J W, Zhang P J, Chen Y L and Xiao Y F. 2023. Phase-transition microcavity laser.Nano Lett.23, 3048–3053.
[120] [120] Wang C, Zhang P, Xiao W Q, Zhao J Q, Shi M T, Wei H Q, Deng Z H, Guo B L, Zheng Z J and Yu Y. 2020. Visiblelight-assisted multimechanism design for one-step engineering tough hydrogels in seconds.Nat. Commun.11, 4694.
[121] [121] Won D et al. 2022. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation.Sci. Adv.8, eabo3209.
[122] [122] Huang X J et al. 2020. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence.ACS Nano14, 3150–3158.
[123] [123] He X Y et al. 2021. Bioinspired functional glass integrated with multiplex repellency ability from laser-patterned hexagonal texturing.Chem. Eng. J.416, 129113.
[124] [124] Ye R Q, Chyan Y, Zhang J B, Li Y L, Han X, Kittrell C and Tour J M. 2017. Laser-induced graphene formation on wood.Adv. Mater.29, 1702211.
[125] [125] Le T S D, Park S, An J N, Lee P S and Kim Y J. 2019. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics.Adv. Funct. Mater.29, 1902771.
[126] [126] Chyan Y, Ye R Q, Li Y L, Singh S P, Arnusch C J and Tour J M. 2018. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food.ACS Nano12, 2176–2183.
[127] [127] Li Z H, Lu L S, Xie Y X, Wang W T, Lin Z R, Tang B and Lin N. 2021. Preparation of laser-induced graphene fabric from silk and its application examples for flexible sensor.Adv. Eng. Mater.23, 2100195.
[128] [128] Nasser J, Groo L, Zhang L S and Sodano H. 2020. Laser induced graphene fibers for multifunctional aramid fiber reinforced composite.Carbon158, 146–156.
[129] [129] Chen J Y, Wang Y N, Liu F and Luo S D. 2020. Laserinduced graphene paper heaters with multimodally patternable electrothermal performance for low-energy manufacturing of composites.ACS Appl. Mater. Interfaces12, 23284–23297.
[130] [130] Zhang Z C, Song M M, Hao J X, Wu K B, Li C Y and Hu C G. 2018. Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates.Carbon127, 287–296.
[131] [131] Zhang C, Zhang C, Wu X Y, Ping J F and Ying Y B. 2022. An integrated and robust plant pulse monitoring system based on biomimetic wearable sensor.npj Flex. Electron.6, 43.
[132] [132] Wang H, Zhao Z F, Liu P P and Guo X G. 2022. Laser-induced graphene based flexible electronic devices.Biosensors12, 55.
[133] [133] Ye R Q, James D K and Tour J M. 2019. Laser-induced graphene: from discovery to translation.Adv. Mater.31, 1803621.
[134] [134] Lin H, Sturmberg B C P, Lin K T, Yang Y Y, Zheng X R, Chong T K, de Sterke C M and Jia B H. 2019. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light.Nat. Photon.13, 270–276.
[135] [135] Kumar P et al. 2019. Laser shock tuning dynamic interlayer coupling in graphene–boron nitride moir superlattices.Nano Lett.19, 283–291.
[136] [136] Lu Z J, Xu Y, Yu Y Q, Xu K W, Mao J, Xu G B, Ma Y M, Wu D and Jie J S. 2020. Ultrahigh speed and broadband fewlayer MoTe2/Si 2D–3D heterojunction-based photodiodes fabricated by pulsed laser deposition.Adv. Funct. Mater.30, 1907951.
[137] [137] Yin K, Yang S, Dong X R, Chu D K, Duan J A and He J. 2018. Ultrafast achievement of a superhydrophilic/hydrophobic janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting.ACS Appl. Mater. Interfaces10, 31433–31440.
[138] [138] Wang J et al. 2020. Programmed ultrafast scan welding of Cu nanowire networks with a pulsed ultraviolet laser beam for transparent conductive electrodes and flexible circuits.ACS Appl. Mater. Interfaces12, 35211–35221.
[139] [139] Xu X Y et al. 2022. Femtosecond laser writing of lithium niobate ferroelectric nanodomains.Nature609, 496–501.
[140] [140] Ji Y Q, Zhang Y, Zhu J Q, Geng P, Halpert J E and Guo L. 2023. Splashing-assisted femtosecond laser-activated metal deposition for mold- and mask-free fabrication of robust microstructured electrodes for flexible pressure sensors.Small19, 2207362.
[141] [141] Cao P L, Wang C, Niu S C, Han Z W, Liu L P and Duan J A. 2024. An ultrasensitive flexible force sensor with natureinspired minimalistic architecture to achieve a detection resolution and threshold of 1 mN for underwater applications.Mater. Sci. Eng.R161, 100862.
[142] [142] Zhao L, Qiao J Y, Li F M, Yuan D D, Huang J X, Wang M and Xu S L. 2022. Laser-patterned hierarchical aligned micro-/nanowire network for highly sensitive multidimensional strain sensor.ACS Appl. Mater. Interfaces14, 48276–48284.
[143] [143] Yuan D D, Li J, Huang J X, Wang M, Xu S L and Wang X W. 2022. Large-scale laser nanopatterning of multiband tunable mid-infrared metasurface absorber.Adv. Opt. Mater.10, 2200939.
[144] [144] Xue C et al. 2021. 3D multiscale micro-/nanofolds by femtosecond laser intermittent ablation and constrained heating on a shape memory polymer.ACS Appl. Mater. Interfaces13, 23210–23219.
[145] [145] Jiang S J et al. 2020. Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer.Nano Lett.20, 7519–7529.
[146] [146] Qin L et al. 2020. 5 nm nanogap electrodes and arrays by super-resolution laser lithography.Nano Lett.20, 4916–4923.
[147] [147] Huang J X, Xu K, Hu J, Yuan D D, Li J, Qiao J Y and Xu S L. 2022. Self-aligned plasmonic lithography for maskless fabrication of large-area long-range ordered 2D nanostructures.Nano Lett.22, 6223–6228.
[148] [148] Huang L Y, Xu K, Yuan D D, Hu J, Wang X W and Xu S L. 2022. Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces.Nat. Commun.13, 5823.
[149] [149] Wang H M, Deng D X, Zhai Z J and Yao Y X. 2024. Laserprocessed functional surface structures for multi-functional applications-a review.J. Manuf. Process.116, 247–283.
[150] [150] Wang L Z, Tian Z, Jiang G C, Luo X, Chen C H, Hu X Y, Zhang H J and Zhong M M. 2022. Spontaneous dewetting transitions of droplets during icing & melting cycle.Nat. Commun.13, 378.
[151] [151] Luo J S, Sun W T, Duan R X, Yang W Q, Chan K C, Ren F Z and Yang X S. 2022. Laser surface treatmentintroduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance.J. Mater. Sci. Technol.110, 43–56.
[152] [152] Yu J, Wu J G, Yang H, Li P, Liu J, Wang M, Pang J H, Li C B, Yang C and Xu K C. 2022. Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic/-philic microporous platform.ACS Appl. Mater. Interfaces14, 43877–43885.
[153] [153] Dinh Le T S, An J N, Huang Y, Vo Q, Boonruangkan J, Tran T, Kim S W, Sun G Z and Kim Y J. 2019. Ultrasensitive anti-interference voice recognition by bio-inspired skinattachable self-cleaning acoustic sensors.ACS Nano13, 13293–13303.
[154] [154] Huang J X, Xu K, Xu S L, Li X W and Wei Q H. 2022. Selfaligned laser-induced periodic surface structures for largearea controllable nanopatterning.Laser Photon. Rev.16, 2200093.
[155] [155] Jang H et al. 2022. Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons.Nat. Commun.13, 6604.
[156] [156] Liu S L Z, Shah D S and Kramer-Bottiglio R. 2021. Highly stretchable multilayer electronic circuits using biphasic gallium-indium.Nat. Mater.20, 851–858.
[157] [157] Yang J H, Cao J Q, Han J, Xiong Y, Luo L, Dan X Z, Yang Y J, Li L L, Sun J and Sun Q J. 2022. Stretchable multifunctional self-powered systems with Cu-EGaIn liquid metal electrodes.Nano Energy101, 107582.
[158] [158] Shi J L et al. 2023. Embedment of sensing elements for robust, highly sensitive, and cross-talk–free iontronic skins for robotics applications.Sci. Adv.9, eadf8831.
[159] [159] Xu H C et al. 2020. Flexible waterproof piezoresistive pressure sensors with wide linear working range based on conductive fabrics.Nanomicro Lett.12, 159.
[160] [160] Jiang Y et al. 2023. A universal interface for plugand-play assembly of stretchable devices.Nature614, 456–462.
[161] [161] Yang Y R et al. 2020. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat.Nat. Biotechnol.38, 217–224.
[162] [162] Song Y, Min J H, Yu Y, Wang H B, Yang Y R, Zhang H X and Gao W. 2020. Wireless battery-free wearable sweat sensor powered by human motion.Sci. Adv.6, eaay9842.
[163] [163] Li Y H, Long J Y, Chen Y, Huang Y and Zhao N. 2022. Crosstalk-free, high-resolution pressure sensor arrays enabled by high-throughput laser manufacturing.Adv. Mater.34, 2200517.
[164] [164] Yan Z G et al. 2021. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing.Adv. Funct. Mater.31, 2100709.
[165] [165] Lopes P A, Santos B C, de Almeida A T and Tavakoli M. 2021. Reversible polymer-gel transition for ultra-stretchable chipintegrated circuits through self-soldering and self-coating and self-healing.Nat. Commun.12, 4666.
[166] [166] Han J, Xu N, Yu J R, Wang Y F, Xiong Y, Wei Y C, Wang Z L and Sun Q J. 2022. Energy autonomous paper modules and functional circuits.Energy Environ. Sci.15, 5069–5081.
[167] [167] Vella D. 2019. Buffering by buckling as a route for elastic deformation.Nat. Rev. Phys.1, 425–436.
[168] [168] Yang C, Zhang H, Liu Y D, Yu Z L, Wei X D and Hu Y F. 2018. Kirigami-inspired deformable 3D structures conformable to curved biological surface.Adv. Sci.5, 1801070.
[169] [169] Zhang Y-L, Tian Y, Wang H, Ma Z-C, Han D-D, Niu LG, Chen Q-D and Sun H-B. 2019. Dual-3D femtosecond laser nanofabrication enables dynamic actuation.ACS Nano13, 4041–4048.
[170] [170] Zhang H Q, Ding X, Zhang X W and Xu F. 2022. A smart ball sensor fabricated by laser kirigami of graphene for personalized long-term grip strength monitoring.npj Flex. Electron.6, 28.
[171] [171] Luong D X et al. 2018. Laminated object manufacturing of 3D-printed laser-induced graphene foams.Adv. Mater.30, 1707416.
[172] [172] Liu F, Gao Y, Wang G T, Wang D, Wang Y N, He M H, Ding X L, Duan H B and Luo S D. 2023. Laser-induced graphene enabled additive manufacturing of multifunctional 3D Architectures with freeform structures.Adv. Sci.10, 2204990.
[173] [173] Wu M M et al. 2022. Superelastic graphene aerogel-based metamaterials.Nat. Commun.13, 4561.
[174] [174] Chen B L et al. 2022. Tuning the structure, conductivity, and wettability of laser-induced graphene for multiplexed open microfluidic environmental biosensing and energy storage devices.ACS Nano16, 15–28.
[175] [175] Kim K K, Ha I, Won P, Seo D G, Cho K J and Ko S H. 2019. Transparent wearable three-dimensional touch by selfgenerated multiscale structure.Nat. Commun.10, 2582.
[176] [176] Kaidarova A, Alsharif N, Oliveira B N M, Marengo M, Geraldi N R, Duarte C M and Kosel J. 2020. Laserprinted, flexible graphene pressure sensors.Glob. Chall.4, 2000001.
[177] [177] Hepp M, Wang H Z, Derr K, Delacroix S, Ronneberger S, Loeffler F F, Butz B and Strauss V. 2022. Trained laserpatterned carbon as high-performance mechanical sensors.npj Flex. Electron.6, 3.
[178] [178] Wang W T, Lu L S, Li Z H, Lin L H, Liang Z B, Lu X Y and Xie Y X. 2022. Fingerprint-inspired strain sensor with balanced sensitivity and strain range using laser-induced graphene.ACS Appl. Mater. Interfaces14, 1315–1325.
[179] [179] Tao L Q et al. 2017. An intelligent artificial throat with sound-sensing ability based on laser induced graphene.Nat. Commun.8, 14579.
[180] [180] Chhetry A, Sharma S, Barman S C, Yoon H, Ko S, Park C, Yoon S, Kim H and Park J Y. 2021. Black phosphorus@laser-engraved graphene heterostructure-based temperature-strain hybridized sensor for electronicskin applications.Adv. Funct. Mater.31, 2007661.
[181] [181] Stanford M G, Zhang C, Fowlkes J D, Hoffman A, Ivanov I N, Rack P D and Tour J M. 2020. High-resolution laserinduced graphene. flexible electronics beyond the visible limit.ACS Appl. Mater. Interfaces12, 10902–10907.
[182] [182] Lan L Y, Le X H, Dong H Y, Xie J, Ying Y B and Ping J F. 2020. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface.Biosens. Bioelectron.165, 112360.
[183] [183] Shin J et al. 2020. Sensitive wearable temperature sensor with seamless monolithic integration.Adv. Mater.32, 1905527.
[184] [184] Delacroix S, Zieleniewska A, Ferguson A J, Blackburn J L, Ronneberger S, Loeffler F F and Strauss V. 2020. Using carbon laser patterning to produce flexible, metal-free humidity sensors.ACS Appl. Electron.2, 4146–4154.
[185] [185] Yang L et al. 2022. Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis.Microsyst. Nanoeng.8, 78.
[186] [186] Wang H Z, Delacroix S, Zieleniewska A, Hou J, Tarakina N V, Cruz D, Lauermann I, Ferguson A J, Blackburn J L and Strauss V. 2021. In situ synthesis of molybdenum carbide nanoparticles incorporated into laser-patterned nitrogendoped carbon for room temperature VOC sensing.Adv. Funct. Mater.31, 2104061.
[187] [187] Zhao J, Yi N, Ding X H, Liu S B, Zhu J, Castonguay A C, Gao Y Y, Zarzar L D and Cheng H Y. 2023. In situ laserassisted synthesis and patterning of graphene foam composites as a flexible gas sensing platform.Chem. Eng. J.456, 140956.
[188] [188] Cai J G, Lv C, Aoyagi E, Ogawa S and Watanabe A. 2018. Laser direct writing of a high-performance allgraphene humidity sensor working in a novel sensing mode for portable electronics.ACS Appl. Mater. Interfaces10, 23987–23996.
[189] [189] Rahimi R, Ochoa M and Ziaie B. 2018. Comparison of direct and indirect laser ablation of metallized paper for inexpensive paper-based sensors.ACS Appl. Mater. Interfaces10, 36332–36341.
[190] [190] Yang L et al. 2022. Intrinsically breathable and flexible NO2 gas sensors produced by laser direct writing of self-assembled block copolymers.ACS Appl. Mater. Interfaces14, 17818–17825.
[191] [191] Zhu J X, Cho M, Li Y T, Cho I, Suh J H, Del Orbe D, Jeong Y, Ren T L and Park I. 2019. Biomimetic turbinate-like artificial nose for hydrogen detection based on 3D porous laser-induced graphene.ACS Appl. Mater. Interfaces11, 24386–24394.
[192] [192] Stanford M G, Yang K C, Chyan Y, Kittrell C and Tour J M. 2019. Laser-induced graphene for flexible and embeddable gas sensors.ACS Nano13, 3474–3482.
[193] [193] Wang H Z et al. 2022. Flexible CO2 sensor architecture with selective nitrogen functionalities by one-step laser-induced conversion of versatile organic ink.Adv. Funct. Mater.32, 2207406.
[194] [194] Zahed M A, Barman S C, Das P S, Sharifuzzaman M, Yoon H S, Yoon S H and Park J Y. 2020. Highly flexible and conductive poly (3,4-ethylene dioxythiophene)-poly (styrene sulfonate) anchored 3-dimensional porous graphene network-based electrochemical biosensor for glucose and pH detection in human perspiration.Biosens. Bioelectron.160, 112220.
[195] [195] Lu Z W, Wu L, Dai X X, Wang Y Y, Sun M M, Zhou C L, Du H J and Rao H B. 2021. Novel flexible bifunctional amperometric biosensor based on laser engraved porous graphene array electrodes: highly sensitive electrochemical determination of hydrogen peroxide and glucose.J. Hazard. Mater.402, 123774.
[196] [196] Zhang Y, Li N, Xiang Y J, Wang D B, Zhang P, Wang Y Y, Lu S, Xu R Q and Zhao J. 2020. A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene.Carbon156, 506–513.
[197] [197] Mamleyev E R, Heissler S, Nefedov A, Weidler P G, Nordin N, Kudryashov V V, Lnge K, MacKinnon N and Sharma S. 2019. Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors.npj Flex. Electron.3, 2.
[198] [198] Park S Y, Son S Y, Lee I, Nam H, Ryu B, Park S and Yun C. 2024. Highly sensitive biosensors based on All-PEDOT: PSS organic electrochemical transistors with laser-induced micropatterning.ACS Appl. Mater. Interfaces16, 46664–46676.
[199] [199] Wang M Q et al. 2022. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients.Nat. Biomed. Eng.6, 1225–1235.
[200] [200] He P J W, Katis I N, Kumar A J U, Bryant C A, Keevil C W, Somani B K, Mahobia N, Eason R W and Sones C L. 2020. Laser-patterned paper-based sensors for rapid point-of-care detection and antibiotic-resistance testing of bacterial infections.Biosens. Bioelectron.152, 112008.
[201] [201] Modha S, Shen Y, Chamouni H, Mulchandani A and Tsutsui H. 2021. Laser-etched grooves for rapid fluid delivery for a paper-based chemiresistive biosensor.Biosens. Bioelectron.180, 113090.
[202] [202] Li J X et al. 2022. A tissue-like neurotransmitter sensor for the brain and gut.Nature606, 94–101.
[203] [203] Xu G Y, Jarjes Z A, Wang H W, Phillips A R J, Kilmartin P A and Travas-Sejdic J. 2018. Detection of neurotransmitters by three-dimensional laser-scribed graphene grass electrodes.ACS Appl. Mater. Interfaces10, 42136–42145.
[204] [204] Babatain W, Buttner U, El-Atab N and Hussain M M. 2022. Graphene and liquid metal integrated multifunctional wearable platform for monitoring motion and human-machine interfacing.ACS Nano16, 20305–20317.
[205] [205] Cheng L et al. 2023. Laser-induced graphene strain sensor for conformable lip-reading recognition and human–machine interaction.ACS Appl. Nano Mater.6, 7290–7298.
[206] [206] Raza T, Tufail M K, Ali A, Boakye A, Qi X J, Ma Y L, Ali A, Qu L J and Tian M W. 2022. Wearable and flexible multifunctional sensor based on laser-induced graphene for the sports monitoring system.ACS Appl. Mater. Interfaces14, 54170–54181.
[207] [207] Qiao Y C et al. 2018. Multilayer graphene epidermal electronic skin.ACS Nano12, 8839–8846.
[208] [208] Qiao Y C et al. 2022. Intelligent and multifunctional graphene nanomesh electronic skin with high comfort.Small18, 2104810.
[209] [209] Kedambaimoole V, Kumar N, Shirhatti V, Nuthalapati S, Sen P, Nayak M M, Rajanna K and Kumar S. 2020. Laserinduced direct patterning of free-standing Ti3C2-MXene films for skin conformal tattoo sensors.ACS Sens.5, 2086–2095.
[210] [210] Wang H B, Xiang Z H, Zhao P C, Wan J, Miao L M, Guo H, Xu C, Zhao W, Han M D and Zhang H X. 2022. Doublesided wearable multifunctional sensing system with antiinterference design for human–ambience interface.ACS Nano16, 14679–14692.
[211] [211] Zheng Q Q, Dai X Y, Wu Y H, Liang Q H, Wu Y P, Yang J K, Dong B Q, Gao G J, Qin Q and Huang L B. 2023. Self-powered high-resolution smart insole system for plantar pressure mapping.BMEMat1, e12008.
[212] [212] Han J, Xu N, Liang Y C, Ding M, Zhai J Y, Sun Q J and Wang Z L. 2021. Paper-based triboelectric nanogenerators J and their applications: a review.Beilstein J. Nanotechnol.12, 151–171.
[213] [213] Stanford M G, Li J T, Chyan Y, Wang Z, Wang W and Tour J M. 2019. Laser-induced graphene triboelectric nanogenerators.ACS Nano13, 7166–7174.
[214] [214] Zhang S C, Xiao Y, Chen H M, Zhang Y L, Liu H Y, Qu C M, Shao H X and Xu Y. 2023. Flexible triboelectric tactile sensor based on a robust MXene/leather film for human-machine interaction.ACS Appl. Mater. Interfaces15, 13802–13812.
[215] [215] Jiang C M, Li X J, Yao Y, Lan L Y, Shao Y Z, Zhao F N, Ying Y B and Ping J F. 2019. A multifunctional and highly flexible triboelectric nanogenerator based on MXeneenabled porous film integrated with laser-induced graphene electrode.Nano Energy66, 104121.
[216] [216] Zhang C, Chen H M, Ding X H, Lorestani F, Huang C L, Zhang B W, Zheng B, Wang J, Cheng H Y and Xu Y. 2022. Human motion-driven self-powered stretchable sensing platform based on laser-induced graphene foams.Appl. Phys. Rev.9, 011413.
[217] [217] Huang J, Fu X P, Liu G X, Xu S H, Li X W, Zhang C and Jiang L. 2019. Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing.Nano Energy62, 638–644.
[218] [218] Wang R X, Gao S J, Yang Z, Li Y L, Chen W N, Wu B X and Wu W Z. 2018. Engineered and laser-processed chitosan biopolymers for sustainable and biodegradable triboelectric power generation.Adv. Mater.30, 1706267.
[219] [219] Ling Y et al. 2020. Laser-induced graphene for electrothermally controlled, mechanically guided, 3D assembly and human-soft actuators interaction.Adv. Mater.32, 1908475.
[220] [220] Wang H, Li X Y, Wang X Y, Qin Y, Pan Y and Guo X G. 2024. Somatosensory electro-thermal actuator through the laserinduced graphene technology.Small20, 2310612.
[221] [221] Deng H, Sattari K, Xie Y C, Liao P, Yan Z and Lin J. 2020. Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping.Nat. Commun.11, 6325.
[222] [222] Wang W, Liu Y Q, Liu Y, Han B, Wang H, Han D D, Wang J N, Zhang Y L and Sun H B. 2017. Direct laser writing of superhydrophobic PDMS elastomers for controllable manipulation via marangoni effect.Adv. Funct. Mater.27, 1702946.
[223] [223] Wang H, Zhao Z F, Liu P P, Pan Y and Guo X G. 2022. Stretchable sensors and electro-thermal actuators with selfsensing capability using the laser-induced graphene technology.ACS Appl. Mater. Interfaces14, 41283–41295.
[224] [224] Ham J, Han A K, Cutkosky M R and Bao Z N. 2022. UV-lasermachined stretchable multi-modal sensor network for soft robot interaction.npj Flex. Electron.6, 94.
[225] [225] Zhang S, Ke X X, Jiang Q, Ding H and Wu Z G. 2021. Programmable and reprocessable multifunctional elastomeric sheets for soft origami robots.Sci. Robot.6, eabd6107.
[226] [226] Araromi O A et al. 2020. Ultra-sensitive and resilient compliant strain gauges for soft machines.Nature587, 219–224.
[227] [227] Jiang S et al. 2020. Spatially expandable fiber-based probes as a multifunctional deep brain interface.Nat. Commun.11, 6115.
[228] [228] Yang L et al. 2023. Laser printed microelectronics.Nat. Commun.14, 1103.
Get Citation
Copy Citation Text
Han Jing, Xin Di, Pang Jinbo, Zhao Lili, Sun Dehui, Zheng Yang, Liu Xiaoyan, Zhao Zhenhuan, Zhang Xiaoli, Sun Qijun, Liu Hong, Zhou Weijia. Laser-assisted manufacturing for sensors[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 42008
Category: Topical Review
Received: Sep. 29, 2024
Accepted: Sep. 9, 2025
Published Online: Sep. 9, 2025
The Author Email: