Bulletin of the Chinese Ceramic Society, Volume. 44, Issue 2, 679(2025)

Stereolithography Additive Manufacturing Process and Electrical Properties of Lead Zirconate Titanate Piezoelectric Ceramics

ZHU Kaifeng1, HE Junchao1, GONG Xiaolong1, LIU Kai1,2、*, SUN Huajun2, and SHI Yusheng3
Author Affiliations
  • 1School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • 2State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
  • 3State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    References(30)

    [1] [1] CHEN J G, TONG B B, LIN J Y, et al. Tailoring the chemical heterogeneity of Mn-modified 0.75BiFeO3-0.25BaTiO3 ceramics for piezoelectric sensor applications[J]. Journal of the European Ceramic Society, 2022, 42(9): 3857-3864.

    [2] [2] MORE N, RANGLANI D, HIRAY A R, et al. Piezoelectric ceramics as stimulatory modulators for regenerative medicine[M]//Advanced Ceramics for Versatile Interdisciplinary Applications. Amsterdam: Elsevier, 2022: 313-338.

    [3] [3] TIAN F H, LIU Y M, MA R L, et al. Properties of PMN-PT single crystal piezoelectric material and its application in underwater acoustic transducer[J]. Applied Acoustics, 2021, 175: 107827.

    [4] [4] WANG W G, CHEN Z R, ZHOU Z Y, et al. Enhancing electromechanical properties of PZT-based piezoelectric ceramics by high-temperature poling for high-power applications[J]. ACS Applied Materials & Interfaces, 2023, 15(12): 15636-15645.

    [5] [5] LU Z L, CAO J W, SONG Z Q, et al. Research progress of ceramic matrix composite parts based on additive manufacturing technology[J]. Virtual and Physical Prototyping, 2019, 14(4): 333-348.

    [6] [6] HUANG B T, LI C H, ZHANG Y B, et al. Advances in fabrication of ceramic corundum abrasives based on sol-gel process[J]. Chinese Journal of Aeronautics, 2021, 34(6): 1-17.

    [7] [7] DENG L J, QIAO L, ZHENG J W, et al. Injection molding, debinding and sintering of ZrO2 ceramic modified by silane couping agent[J]. Journal of the European Ceramic Society, 2020, 40(4): 1566-1573.

    [8] [8] MESHALKIN V P, BELYAKOV A V. Methods used for the compaction and molding of ceramic matrix composites reinforced with carbon nanotubes[J]. Processes, 2020, 8(8): 1004.

    [9] [9] SUN D W, LU Y, KARAKI T. Review of the applications of 3D printing technology in the field of piezoelectric ceramics[J]. Resources Chemicals and Materials, 2023, 2(2): 128-142.

    [10] [10] LI Z Y, LI J, LUO H, et al. Direct ink writing of 3D piezoelectric ceramics with complex unsupported structures[J]. Journal of the European Ceramic Society, 2022, 42(9): 3841-3847.

    [11] [11] CHAVEZ L A, WILBURN B R, IBAVE P, et al. Fabrication and characterization of 3D printing induced orthotropic functional ceramics[J]. Smart Materials and Structures, 2019, 28(12): 125007.

    [12] [12] SAADI M A S R, MAGUIRE A, POTTACKAL N T, et al. Direct ink writing: a 3D printing technology for diverse materials[J]. Advanced Materials, 2022, 34(28): 2108855.

    [13] [13] MOSTAFAEI A, ELLIOTT A M, BARNES J E, et al. Binder jet 3D printing: process parameters, materials, properties, modeling, and challenges[J]. Progress in Materials Science, 2021, 119: 100707.

    [14] [14] KIM H, MANRIQUEZ L C D, ISLAM M T, et al. 3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique[J]. MRS Communications, 2019, 9(3): 1115-1123.

    [15] [15] CHA J, LEE J W, BAE B, et al. Fabrication and characterization of PZT suspensions for stereolithography based on 3D printing[J]. Journal of the Korean Ceramic Society, 2019, 56(4): 360-364.

    [16] [16] CHEN Y, BAO X L, WONG C M, et al. PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application[J]. Ceramics International, 2018, 44(18): 22725-22730.

    [17] [17] JIAO Y F, FAN G F, CHEN Y A, et al. Development and optimization of PZT suspensions with high solid loading and low viscosity for stereolithography-based additive manufacturing[J]. Ceramics International, 2024, 50(2): 3325-3333.

    [18] [18] LIU K, SUN Y F, SUN H J, et al. Effect of particle grading on the properties of photosensitive slurry and BaTiO3 piezoelectric ceramic via digital light processing 3D printing[J]. Journal of the European Ceramic Society, 2023, 43(8): 3266-3274.

    [19] [19] LIU K, ZHOU C Y, HU J M, et al. Fabrication of barium titanate ceramics via digital light processing 3D printing by using high refractive index monomer[J]. Journal of the European Ceramic Society, 2021, 41(12): 5909-5917.

    [20] [20] LIU K, HU J M, DU Y Y, et al. Influence of particle size on 3D-printed piezoelectric ceramics via digital light processing with furnace sintering[J]. International Journal of Applied Ceramic Technology, 2022, 19(5): 2461-2471.

    [21] [21] KANG J H, JANG K J, SAKTHIABIRAMI K, et al. Mechanical properties and optical evaluation of scaffolds produced from 45S5 bioactive glass suspensions via stereolithography[J]. Ceramics International, 2020, 46(2): 2481-2488.

    [22] [22] ZHANG C, JIANG Z L, ZHAO L, et al. Stability, rheological behaviors, and curing properties of 3Y-ZrO2 and 3Y-ZrO2/GO ceramic suspensions in stereolithography applied for dental implants[J]. Ceramics International, 2021, 47(10): 13344-13350.

    [23] [23] SIDDIQUI M, MOHAMED J J, AHMAD Z A. Structural, piezoelectric, and dielectric properties of PZT-based ceramics without excess lead oxide[J]. Journal of the Australian Ceramic Society, 2020, 56(2): 371-377.

    [24] [24] YAN S H, SUN C C, CUI Q Y, et al. Dielectric, piezoelectric and DC bias characteristics of bi-doped PZT multilayer ceramic actuator[J]. Materials Chemistry and Physics, 2020, 255: 123605.

    [25] [25] WANG W G, LIANG R H, ZHOU Z Y, et al. Defect engineering for reduced large AC signal dielectric loss of PZT-based hard piezoelectric ceramics[J]. Journal of the American Ceramic Society, 2022, 105(1): 279-291.

    [26] [26] LUO Y X, PU T, FAN S B, et al. Enhanced piezoelectric properties in low-temperature sintering PZN-PZT ceramics by adjusting Zr/ Ti ratio[J].Journal of Advanced Dielectrics, 2022, 12(2): 2250001.

    [27] [27] ARUL K T, RAMACHANDRA RAO M S. Ferroelectric properties of flexible PZT composite films[J]. Journal of Physics and Chemistry of Solids, 2020, 146: 109371.

    [28] [28] SHKURATOV S I, LYNCH C S. A review of ferroelectric materials for high power devices[J]. Journal of Materiomics, 2022, 8(4): 739-752.

    [29] [29] QIU N, WAN Y H, SHEN Y J, et al. Experimental and numerical studies on mechanical properties of TPMS structures[J]. International Journal of Mechanical Sciences, 2024, 261: 108657.

    [30] [30] SIMSEK U, AKBULUT A, GAYIR C E, et al. Modal characterization of additively manufactured TPMS structures: comparison between different modeling methods[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(3): 657-674.

    Tools

    Get Citation

    Copy Citation Text

    ZHU Kaifeng, HE Junchao, GONG Xiaolong, LIU Kai, SUN Huajun, SHI Yusheng. Stereolithography Additive Manufacturing Process and Electrical Properties of Lead Zirconate Titanate Piezoelectric Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(2): 679

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Aug. 19, 2024

    Accepted: Mar. 31, 2025

    Published Online: Mar. 31, 2025

    The Author Email: LIU Kai (victor_liu@whut.edu.cn)

    DOI:10.16552/j.cnki.issn1001-1625.20240909.001

    Topics