Chinese Journal of Lasers, Volume. 50, Issue 1, 0113001(2023)
Photoemission Orbital Tomography for Organic Nanomaterials
[1] Fukui K, Yonezawa T, Shingu H. A molecular orbital theory of reactivity in aromatic hydrocarbons[J]. The Journal of Chemical Physics, 20, 722-725(1952).
[2] Brion C E, Cooper G, Zheng Y et al. Imaging of orbital electron densities by electron momentum spectroscopy: a chemical interpretation of the binary (e,2e) reaction[J]. Chemical Physics, 270, 13-30(2001).
[3] Itatani J, Levesque J, Zeidler D et al. Tomographic imaging of molecular orbitals[J]. Nature, 432, 867-871(2004).
[4] Peng P, Marceau C, Villeneuve D M. Attosecond imaging of molecules using high harmonic spectroscopy[J]. Nature Reviews Physics, 1, 144-155(2019).
[5] Dai C, Wang Y, Miao Z M et al. Generation and application of high-order harmonics based on interaction between femtosecond laser and matter[J]. Laser&Optoelectronics Progress, 58, 0300001(2021).
[6] Repp J, Meyer G, Stojković S M et al. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals[J]. Physical Review Letters, 94, 026803(2005).
[7] Soe W H, Manzano C, De Sarkar A et al. Direct observation of molecular orbitals of pentacene physisorbed on Au(111) by scanning tunneling microscope[J]. Physical Review Letters, 102, 176102(2009).
[8] Puschnig P, Berkebile S, Fleming A J et al. Reconstruction of molecular orbital densities from photoemission data[J]. Science, 326, 702-706(2009).
[9] Koller G, Berkebile S, Oehzelt M et al. Intra- and intermolecular band dispersion in an organic crystal[J]. Science, 317, 351-355(2007).
[10] Berkebile S, Puschnig P, Koller G et al. Electronic band structure of pentacene: an experimental and theoretical study[J]. Physical Review B, 77, 115312(2008).
[11] Berkebile S, Koller G, Puschnig P et al. Angle-resolved photoemission of chain-like molecules: the electronic band structure of sexithiophene and sexiphenyl[J]. Applied Physics A, 95, 101-105(2009).
[12] Krylov A I. From orbitals to observables and back[J]. The Journal of Chemical Physics, 153, 080901(2020).
[13] Schwarz W H E. Measuring orbitals: provocation or reality?[J]. Angewandte Chemie (International Ed. in English), 45, 1508-1517(2006).
[14] Truhlar D G, Hiberty P C, Shaik S et al. Orbitals and the interpretation of photoelectron spectroscopy and (e,2e) ionization experiments[J]. Angewandte Chemie (International Ed. in English), 58, 12332-12338(2019).
[15] Ortiz J V. Dyson-orbital concepts for description of electrons in molecules[J]. The Journal of Chemical Physics, 153, 070902(2020).
[16] Scerri E R. Have orbitals really been observed?[J]. Journal of Chemical Education, 77, 1492(2000).
[17] Pham B Q, Gordon M S. Can orbitals really be observed in scanning tunneling microscopy experiments?[J]. The Journal of Physical Chemistry A, 121, 4851-4852(2017).
[18] Dauth M, Körzdörfer T, Kümmel S et al. Orbital density reconstruction for molecules[J]. Physical Review Letters, 107, 193002(2011).
[19] Dauth M, Wiessner M, Feyer V et al. Angle resolved photoemission from organic semiconductors: orbital imaging beyond the molecular orbital interpretation[J]. New Journal of Physics, 16, 103005(2014).
[20] Gadzuk J W. Angular distributions of electrons photoemitted from chemisorbed atoms[J]. Solid State Communications, 15, 1011-1016(1974).
[21] Gadzuk J W. Surface molecules and chemisorption. II. Photoemission angular distributions[J]. Physical Review B, 10, 5030-5044(1974).
[22] Brandstetter D, Yang X S, Lüftner D et al. kMap.py: a Python program for simulation and data analysis in photoemission tomography[J]. Computer Physics Communications, 263, 107905(2021).
[23] Ueno N. Angle-resolved UPS of ultrathin films of functional organic molecules with synchrotron radiation: determination of molecular orientation by quantitative analysis of photoelectron angular distribution[J]. Journal of Electron Spectroscopy and Related Phenomena, 78, 345-350(1996).
[24] Kera S, Tanaka S, Yamane H et al. Quantitative analysis of photoelectron angular distribution of single-domain organic monolayer film: NTCDA on GeS(001)[J]. Chemical Physics, 325, 113-120(2006).
[25] Liu Y, Ikeda D, Nagamatsu S et al. Impact of molecular orbital distribution on photoelectron intensity for picene film[J]. Journal of Electron Spectroscopy and Related Phenomena, 195, 287-292(2014).
[26] Puschnig P, Koller G, Draxl C et al. The structure of molecular orbitals investigated by angle-resolved photoemission[M]. Sitter H, Draxl C, Ramsey M. Small organic molecules on surfaces, 173, 3-23(2013).
[27] Bradshaw A M, Woodruff D P. Molecular orbital tomography for adsorbed molecules: is a correct description of the final state really unimportant?[J]. New Journal of Physics, 17, 013033(2015).
[28] Moser S. An experimentalist’s guide to the matrix element in angle resolved photoemission[J]. Journal of Electron Spectroscopy and Related Phenomena, 214, 29-52(2017).
[29] Lüftner D, Weiß S, Yang X S et al. Understanding the photoemission distribution of strongly interacting two-dimensional overlayers[J]. Physical Review B, 96, 125402(2017).
[30] Wießner M, Hauschild D, Sauer C et al. Complete determination of molecular orbitals by measurement of phase symmetry and electron density[J]. Nature Communications, 5, 4156(2014).
[31] Ziroff J, Forster F, Schöll A et al. Hybridization of organic molecular orbitals with substrate states at interfaces: PTCDA on silver[J]. Physical Review Letters, 104, 233004(2010).
[32] Felter J, Wolters J, Bocquet F C et al. Momentum microscopy on the micrometer scale: photoemission micro-tomography applied to single molecular domains[J]. Journal of Physics. Condensed Matter, 31, 114003(2019).
[33] Wießner M, Hauschild D, Schöll A et al. Electronic and geometric structure of the PTCDA/Ag(110) interface probed by angle-resolved photoemission[J]. Physical Review B, 86, 045417(2012).
[34] Zamborlini G, Lüftner D, Feng Z J et al. Multi-orbital charge transfer at highly oriented organic/metal interfaces[J]. Nature Communications, 8, 335(2017).
[35] Weiß S, Lüftner D, Ules T et al. Exploring three-dimensional orbital imaging with energy-dependent photoemission tomography[J]. Nature Communications, 6, 8287(2015).
[36] Yang X S, Egger L, Hurdax P et al. Identifying surface reaction intermediates with photoemission tomography[J]. Nature Communications, 10, 3189(2019).
[37] Wallauer R, Raths M, Stallberg K et al. Tracing orbital images on ultrafast time scales[J]. Science, 371, 1056-1059(2021).
[38] Willenbockel M, Lüftner D, Stadtmüller B et al. The interplay between interface structure, energy level alignment and chemical bonding strength at organic-metal interfaces[J]. Physical Chemistry Chemical Physics, 17, 1530-1548(2015).
[39] Reinisch E M, Ules T, Puschnig P et al. Development and character of gap states on alkali doping of molecular films[J]. New Journal of Physics, 16, 023011(2014).
[40] Huempfner T, Hafermann M, Udhardt C et al. Insight into the unit cell: structure of picene thin films on Ag(100) revealed with complementary methods[J]. The Journal of Chemical Physics, 145, 174706(2016).
[41] Cao L, Zhang W H, Han Y Y et al. Angular dependent NEXAFS study of the molecular orientation of PTCDA multilayers on Au(111) surface[J]. Chinese Science Bulletin, 56, 3575-3577(2011).
[42] Ules T, Lüftner D, Reinisch E M et al. Orbital tomography of hybridized and dispersing molecular overlayers[J]. Physical Review B, 90, 155430(2014).
[43] Puschnig P, Reinisch E M, Ules T et al. Orbital tomography: deconvoluting photoemission spectra of organic molecules[J]. Physical Review B, 84, 235427(2011).
[44] Grimm M, Metzger C, Graus M et al. Molecular orbital imaging beyond the first monolayer: insights into the pentacene/Ag(110) interface[J]. Physical Review B, 98, 195412(2018).
[45] Stadtmüller B, Lüftner D, Willenbockel M et al. Unexpected interplay of bonding height and energy level alignment at heteromolecular hybrid interfaces[J]. Nature Communications, 5, 3685(2014).
[46] van Straaten G, Franke M, Soubatch S et al. Role of the central metal atom in substrate-mediated molecular interactions in phthalocyanine-based heteromolecular monolayers[J]. The Journal of Physical Chemistry C, 122, 8491-8504(2018).
[47] Yang X S, Egger L, Fuchsberger J et al. Coexisting charge states in a unary organic monolayer film on a metal[J]. The Journal of Physical Chemistry Letters, 10, 6438-6445(2019).
[48] Puschnig P, Boese A D, Willenbockel M et al. Energy ordering of molecular orbitals[J]. The Journal of Physical Chemistry Letters, 8, 208-213(2017).
[49] Körzdörfer T, Kümmel S, Marom N et al. When to trust photoelectron spectra from Kohn-Sham eigenvalues: the case of organic semiconductors[J]. Physical Review B, 79, 201205(2009).
[50] Lüftner D, Ules T, Reinisch E M et al. Imaging the wave functions of adsorbed molecules[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 605-610(2014).
[51] Kliuiev P, Latychevskaia T, Osterwalder J et al. Application of iterative phase-retrieval algorithms to ARPES orbital tomography[J]. New Journal of Physics, 18, 093041(2016).
[52] Kliuiev P, Latychevskaia T, Zamborlini G et al. Algorithms and image formation in orbital tomography[J]. Physical Review B, 98, 085426(2018).
[53] Graus M, Metzger C, Grimm M et al. Three-dimensional tomographic imaging of molecular orbitals by photoelectron momentum microscopy[J]. The European Physical Journal B, 92, 80(2019).
[54] Egger L, Kollmann B, Hurdax P et al. Can photoemission tomography be useful for small, strongly-interacting adsorbate systems?[J]. New Journal of Physics, 21, 043003(2019).
[55] Haags A, Yang X S, Egger L et al. Momentum space imaging of σ orbitals for chemical analysis[J]. Science Advances, 8, eabn0819(2022).
[56] Metzger C, Graus M, Grimm M et al. Plane-wave final state for photoemission from nonplanar molecules at a metal-organic interface[J]. Physical Review B, 101, 165421(2020).
[57] Haag N, Lüftner D, Haag F et al. Signatures of an atomic crystal in the band structure of a C60 thin film[J]. Physical Review B, 101, 165422(2020).
[58] Graus M, Grimm M, Metzger C et al. Electron-vibration coupling in molecular materials: assignment of vibronic modes from photoelectron momentum mapping[J]. Physical Review Letters, 116, 147601(2016).
[59] Haags A, Reichmann A, Fan Q T et al. Kekulene: on-surface synthesis, orbital structure, and aromatic stabilization[J]. ACS Nano, 14, 15766-15775(2020).
[60] Yang X S, Krieger I, Lüftner D et al. On the decoupling of molecules at metal surfaces[J]. Chemical Communications, 54, 9039-9042(2018).
[61] Yang X S, Jugovac M, Zamborlini G et al. Momentum-selective orbital hybridisation[J]. Nature Communications, 13, 5148(2022).
[62] Puschnig P, Ramsey M G. Photoemission tomography: valence band photoemission as a quantitative method for investigating molecular films[M]. Wandelt K. Encyclopedia of interfacial chemistry, 380-391(2018).
[63] Wei Z Y, Zhong S Y, He X K et al. Progresses and trends in attosecond optics[J]. Chinese Journal of Lasers, 48, 0501001(2021).
[64] Li Z Y, Men T, Tang W Q et al. Research progress in spatiotemporal characterization of femtosecond laser fields[J]. Chinese Journal of Lasers, 49, 1201003(2022).
[65] Bisgaard C Z, Clarkin O J, Wu G R et al. Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules[J]. Science, 323, 1464-1468(2009).
[66] Holmegaard L, Hansen J L, Kalhøj L et al. Photoelectron angular distributions from strong-field ionization of oriented molecules[J]. Nature Physics, 6, 428-432(2010).
Get Citation
Copy Citation Text
Xiaosheng Yang, Peining Li, Xinliang Zhang. Photoemission Orbital Tomography for Organic Nanomaterials[J]. Chinese Journal of Lasers, 2023, 50(1): 0113001
Category: micro and nano optics
Received: Aug. 11, 2022
Accepted: Oct. 18, 2022
Published Online: Jan. 6, 2023
The Author Email: Li Peining (lipn@hust.edu.cn)