Journal of Radiation Research and Radiation Processing, Volume. 42, Issue 3, 030102(2024)
Progress on the theoretical simulations of the radiation aging of silicon rubber
[1] Charlesby A. Effect of molecular weight on the cross-linking of siloxanes by high-energy radiation[J]. Nature, 173, 679-680(1954).
[2] Shit S C, Shah P. A review on silicone rubber[J]. National Academy Science Letters, 36, 355-365(2013).
[3] Han R J, Li Y L, Zhu Q S et al. Research on the preparation and thermal stability of silicone rubber composites: a review[J]. Composites Part C: Open Access, 8, 100249(2022).
[4] Najam M, Hussain M, Ali Z et al. Influence of silica materials on synthesis of elastomer nanocomposites: a review[J]. Journal of Elastomers & Plastics, 52, 747-771(2020).
[5] Liu B, Huang W, Ao Y Y et al. Dose rate effects of gamma irradiation on silicone foam[J]. Polymer Degradation and Stability, 147, 97-102(2018).
[6] Liu Q, Huang W, Chen H B. Paving the way to simulate and understand the radiochemical damage of porous polymer foam[J]. ACS Materials Letters, 5, 2174-2188(2023).
[7] Liu Q, Huang W, Liu B et al. Gamma radiation chemistry of polydimethylsiloxane foam in radiation-thermal environments: experiments and simulations[J]. ACS Applied Materials & Interfaces, 13, 41287-41302(2021).
[8] Liu B, Liu Q, Ao Y, Wang P et al. Gamma irradiation-induced degradation of silicone encapsulation[J]. Materials Today Communications, 31, 103476(2022).
[9] Maiti A, Gee R H, Weisgraber T et al. Constitutive modeling of radiation effects on the permanent set in a silicone elastomer[J]. Polymer Degradation and Stability, 93, 2226-2229(2008).
[10] Mayer B P, Lewicki J P, Weisgraber T H et al. Linking network microstructure to macroscopic properties of siloxane elastomers using combined nuclear magnetic resonance and mesoscale computational modeling[J]. Macromolecules, 44, 8106-8115(2011).
[11] Shen J X, Lin X S, Liu J et al. Effects of cross-link density and distribution on static and dynamic properties of chemically cross-linked polymers[J]. Macromolecules, 52, 121-134(2019).
[12] Liu B, Wang P C, Ao Y Y et al. Effects of combined neutron and gamma irradiation upon silicone foam[J]. Radiation Physics and Chemistry, 133, 31-36(2017).
[13] Chen H B, Liu B, Huang W et al. Gamma radiation induced effects of compressed silicone foam[J]. Polymer Degradation and Stability, 114, 89-93(2015).
[14] Wang P C, Yang N, Liu D et al. Coupling effects of gamma irradiation and absorbed moisture on silicone foam[J]. Materials & Design, 195, 108998(2020).
[15] Lewicki J P, Albo R L F, Alviso C T et al. Pyrolysis-gas chromatography/mass spectrometry for the forensic fingerprinting of silicone engineering elastomers[J]. Journal of Analytical and Applied Pyrolysis, 99, 85-91(2013).
[16] Kaneko T, Ito S, Minakawa T et al. Degradation mechanisms of silicone rubber under different aging conditions[J]. Polymer Degradation and Stability, 168, 108936(2019).
[17] Labouriau A, Cady C, Gill J et al. Gamma irradiation and oxidative degradation of a silica-filled silicone elastomer[J]. Polymer Degradation and Stability, 116, 62-74(2015).
[18] Labouriau A, Cox J D, Schoonover J R et al. Mössbauer, NMR and ATR-FTIR spectroscopic investigation of degradation in RTV siloxane foams[J]. Polymer Degradation and Stability, 92, 414-424(2007).
[19] Labouriau A, Cady C, Gill J et al. The effects of gamma irradiation on RTV polysiloxane foams[J]. Polymer Degradation and Stability, 117, 75-83(2015).
[20] Mayer B P, Chinn S C, Maxwell R S et al. Solid state NMR investigation of γ-irradiated composite siloxanes: probing the silica/polysiloxane interface[J]. Polymer Degradation and Stability, 98, 1362-1368(2013).
[21] Wang P C, Liu Q, Liu B et al. Synergistic effects of gamma irradiation, tensile stress and moisture on the radiolysis of silicone foam[J]. Chinese Journal of Polymer Science, 41, 1969-1978(2023).
[22] Shen H, Wu Z H, Dou R Y et al. The effect of modified carbon-doped boron nitride on the mechanical, thermal and γ-radiation stability of silicone rubber composites[J]. Polymer Degradation and Stability, 218, 110542(2023).
[23] Peng Q S, Wang P C, Huang W et al. The irradiation-induced grafting of nano-silica with methyl silicone oil[J]. Polymer, 192, 122315(2020).
[24] CHEN Hongbing, QIN Ziming, WANG Pucheng et al. Recent progress in irradiation-induced aging of silicones[J]. Journal of Radiation Research and Radiation Processing, 38, >030101(2020).
[25] Rodriguez J N, Alviso C T, Fox C A et al. NMR methodologies for the detection and quantification of nanostructural defects in silicone networks[J]. Macromolecules, 51, 1992-2001(2018).
[26] YUE Donghua, JIN Fan, WEI Liming et al. Research progress on the accelerated aging of silicone foam under coupled heat, oxygen and radiation environment[J]. Journal of Radiation Research and Radiation Processing, 40, >030101(2022).
[27] Roqué X. Møller scattering: a neglected application of early quantum electrodynamics[J]. Archive for History of Exact Sciences, 44, 197-264(1992).
[28] Kroonblawd M P, Yoshimura A, Goldman N et al. Multiscale strategy for predicting radiation chemistry in polymers[J]. Journal of Chemical Theory and Computation, 18, 5117-5124(2022).
[29] Yoshimura A, Lamparski M, Giedt J et al. Quantum theory of electronic excitation and sputtering by transmission electron microscopy[J]. Nanoscale, 15, 1053-1067(2023).
[30] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 140, A1133-A1138(1965).
[31] Runge E, Gross E K U. Density-functional theory for time-dependent systems[J]. Physical Review Letters, 52, 997-1000(1984).
[32] Tully J C. Molecular dynamics with electronic transitions[J]. The Journal of Chemical Physics, 93, 1061-1071(1990).
[33] Elstner M, Porezag D, Jungnickel G et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties[J]. Physical Review B, 58, 7260-7268(1998).
[34] Miranda Q R A. Density functional theory for chemical reactivity[M]. Conceptual density functional theory and its applications in the chemical domain, 15-44(2018).
[35] Feliciano G. Equilibrium structures of materials: fundamentals[M]. Materials Modelling using Density Functional Theory: Properties and Predictions, 51-65(2015).
[36] SONG Hongtao, HUANG Wei, FU Yibei et al. DFT study of the radiation stability of the several primary cross-linked chain structures of methyl-vinyl silicone rubber[J]. Computers and Applied Chemistry, 33, 503-506(2016).
[37] SONG Hongtao, HUANG Wei, WU Wenhao et al. Theoretical exploration for radiation stability of several silicone secondary chains[J]. Computers and Applied Chemistry, 32, 39-42(2015).
[38] Yu L, Liu S, Liu B et al. Effect of oxygen on the radiation of silicone rubber determined by gaseous chromatograph and DFT calculation[J]. Nuclear Analysis, 1, 100005(2022).
[39] Ding Y Q, Lu H F, Mou Q H et al. A DFT study on the cyclization-mechanism during process of thermal vacuum degradation for poly(dimethylsiloxanes)[J]. Polymer Degradation and Stability, 182, 109367(2020).
[40] Qin Z M, Wang P C, Yang R et al. Fast pyrolysis of silicones at low temperatures catalyzed by anatase titanium dioxide[J]. Polymer Degradation and Stability, 182, 109387(2020).
[41] Marx D, Hutter J. Getting started: unifying MD and electronic structure[M]. Ab Initio Molecular Dynamics, 11-84(2009).
[42] Iftimie R, Minary P, Tuckerman M E. Ab initio molecular dynamics: concepts, recent developments, and future trends[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 6654-6659(2005).
[43] Kroonblawd M P, Goldman N, Lewicki J P. Chemical degradation pathways in siloxane polymers following phenyl excitations[J]. The Journal of Physical Chemistry B, 122, 12201-12210(2018).
[44] Koskinen P, Mäkinen V. Density-functional tight-binding for beginners[J]. Computational Materials Science, 47, 237-253(2009).
[45] Kroonblawd M P, Goldman N, Maiti A et al. A quantum-based approach to predict primary radiation damage in polymeric networks[J]. Journal of Chemical Theory and Computation, 17, 463-473(2021).
[46] Gibson J B, Goland A N, Milgram M et al. Dynamics of radiation damage[J]. Physical Review, 120, 1229-1253(1960).
[47] de la Rubia T D, Averback R S, Benedek R et al. Role of thermal spikes in energetic displacement cascades[J]. Physical Review Letters, 59, 1930-1933(1987).
[48] Aradi B, Hourahine B, Frauenheim T. DFTB+, a sparse matrix-based implementation of the DFTB method[J]. The Journal of Physical Chemistry A, 111, 5678-5684(2007).
[49] Niklasson A M N, Tymczak C J, Challacombe M. Time-reversible Born-Oppenheimer molecular dynamics[J]. Physical Review Letters, 97, 123001(2006).
[50] Niklasson A M N. Extended Born-Oppenheimer molecular dynamics[J]. Physical Review Letters, 100, 123004(2008).
[51] Niklasson A M N, Steneteg P, Odell A et al. Extended Lagrangian Born–Oppenheimer molecular dynamics with dissipation[J]. The Journal of Chemical Physics, 130, 214109(2009).
[52] Zheng G S, Niklasson A M N, Karplus M. Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method[J]. The Journal of Chemical Physics, 135, >044122(2011).
[53] Kroonblawd M P, Goldman N, Maiti A et al. Polymer degradation through chemical change: a quantum-based test of inferred reactions in irradiated polydimethylsiloxane[J]. Physical Chemistry Chemical Physics, 24, 8142-8157(2022).
[54] Satoh A. Practice of molecular dynamics simulations[M]. Introduction to Practice of Molecular Simulation, 49-104(2011).
[55] Rapaport D C[M]. The art of molecular dynamics simulation, 1-10(2004).
[56] Sushko G B, Solov'yov I A, Solov'yov A V. Molecular dynamics for irradiation driven chemistry: application to the FEBID process[J]. The European Physical Journal D, 70, 217(2016).
[57] Lou W T, Xie C Y, Guan X F. Molecular dynamic study of radiation-moisture aging effects on the interface properties of nano-silica/silicone rubber composites[J]. NPJ Materials Degradation, 7, 32(2023).
[58] Lou W T, Xie C Y, Guan X F. Understanding radiation-thermal aging of polydimethylsiloxane rubber through molecular dynamics simulation[J]. NPJ Materials Degradation, 6, 84(2022).
[59] Liang T, Shin Y K, Cheng Y T et al. Reactive potentials for advanced atomistic simulations[J]. Annual Review of Materials Research, 43, 109-129(2013).
[60] Han Y, Jiang D D, Zhang J L et al. Development, applications and challenges of ReaxFF reactive force field in molecular simulations[J]. Frontiers of Chemical Science and Engineering, 10, 16-38(2016).
[61] Russo M F, van Duin A C T. Atomistic-scale simulations of chemical reactions: bridging from quantum chemistry to engineering[J]. Nuclear Instruments and Methods in Physics Research B, 269, 1549-1554(2011).
[62] Chenoweth K, Cheung S, van Duin A C T et al. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field[J]. Journal of the American Chemical Society, 127, 7192-7202(2005).
[64] Bao J L, Truhlar D G. Variational transition state theory: theoretical framework and recent developments[J]. Chemical Society Reviews, 46, 7548-7596(2017).
[65] JIANG Jing. Study on the high strain rate experiments and constitutive model of EPDM thermal insulation material[D](2016).
[66] Balazs B, Maxwell R, de Teresa S et al. Damage mechanisms of filled siloxanes forpredictive multiscale modeling of aging behavior[J]. MRS Online Proceedings Library, 731, 48(2003).
[67] Maiti A, Weisgraber T H, Gee R. Modeling the mechanical and aging properties of silicone rubber and foam ― stockpile-historical & additively manufactured materials[R](2014).
[68] Maiti A, Small W, Kroonblawd M P et al. Constitutive model of radiation aging effects in filled silicone elastomers under strain[J]. The Journal of Physical Chemistry B, 125, 10047-10057(2021).
[69] Fang H, Li J G, Chen H B et al. Radiation induced degradation of silica reinforced silicone foam: experiments and modeling[J]. Mechanics of Materials, 105, 148-156(2017).
[70] YAN Shunping, YU Yong, WANG Luobin et al. Constitutive model for silicone rubber foam over a wide range of y radiation[J]. Chinese Journal of Solid Mechanics, 41, 555-566(2020).
[71] Jia D, Yan S P, Peng Y Q et al. Constitutive modeling of γ-irradiated silicone rubber foams under compression and shear loading[J]. Polymer Degradation and Stability, 183, 109410(2021).
[72] Wang H Y, Qiu Y, Hu W J et al. Gamma radiation induced compressive response of silicon rubber foam: experiments and modeling[J]. Journal of Materials Research, 34, 2194-2200(2019).
Get Citation
Copy Citation Text
Qiang LIU, Ruiyang DOU, Yiqian ZHANG, Wei HUANG, Xianfu MENG, Hongbing CHEN. Progress on the theoretical simulations of the radiation aging of silicon rubber[J]. Journal of Radiation Research and Radiation Processing, 2024, 42(3): 030102
Category: Research Articles
Received: Nov. 26, 2023
Accepted: Jan. 15, 2024
Published Online: Jul. 18, 2024
The Author Email: Hongbing CHEN (陈洪兵)