Journal of Radiation Research and Radiation Processing, Volume. 42, Issue 3, 030102(2024)

Progress on the theoretical simulations of the radiation aging of silicon rubber

Qiang LIU... Ruiyang DOU, Yiqian ZHANG, Wei HUANG, Xianfu MENG and Hongbing CHEN* |Show fewer author(s)
Author Affiliations
  • Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621000, China
  • show less
    References(72)

    [1] Charlesby A. Effect of molecular weight on the cross-linking of siloxanes by high-energy radiation[J]. Nature, 173, 679-680(1954).

    [2] Shit S C, Shah P. A review on silicone rubber[J]. National Academy Science Letters, 36, 355-365(2013).

    [3] Han R J, Li Y L, Zhu Q S et al. Research on the preparation and thermal stability of silicone rubber composites: a review[J]. Composites Part C: Open Access, 8, 100249(2022).

    [4] Najam M, Hussain M, Ali Z et al. Influence of silica materials on synthesis of elastomer nanocomposites: a review[J]. Journal of Elastomers & Plastics, 52, 747-771(2020).

    [5] Liu B, Huang W, Ao Y Y et al. Dose rate effects of gamma irradiation on silicone foam[J]. Polymer Degradation and Stability, 147, 97-102(2018).

    [6] Liu Q, Huang W, Chen H B. Paving the way to simulate and understand the radiochemical damage of porous polymer foam[J]. ACS Materials Letters, 5, 2174-2188(2023).

    [7] Liu Q, Huang W, Liu B et al. Gamma radiation chemistry of polydimethylsiloxane foam in radiation-thermal environments: experiments and simulations[J]. ACS Applied Materials & Interfaces, 13, 41287-41302(2021).

    [8] Liu B, Liu Q, Ao Y, Wang P et al. Gamma irradiation-induced degradation of silicone encapsulation[J]. Materials Today Communications, 31, 103476(2022).

    [9] Maiti A, Gee R H, Weisgraber T et al. Constitutive modeling of radiation effects on the permanent set in a silicone elastomer[J]. Polymer Degradation and Stability, 93, 2226-2229(2008).

    [10] Mayer B P, Lewicki J P, Weisgraber T H et al. Linking network microstructure to macroscopic properties of siloxane elastomers using combined nuclear magnetic resonance and mesoscale computational modeling[J]. Macromolecules, 44, 8106-8115(2011).

    [11] Shen J X, Lin X S, Liu J et al. Effects of cross-link density and distribution on static and dynamic properties of chemically cross-linked polymers[J]. Macromolecules, 52, 121-134(2019).

    [12] Liu B, Wang P C, Ao Y Y et al. Effects of combined neutron and gamma irradiation upon silicone foam[J]. Radiation Physics and Chemistry, 133, 31-36(2017).

    [13] Chen H B, Liu B, Huang W et al. Gamma radiation induced effects of compressed silicone foam[J]. Polymer Degradation and Stability, 114, 89-93(2015).

    [14] Wang P C, Yang N, Liu D et al. Coupling effects of gamma irradiation and absorbed moisture on silicone foam[J]. Materials & Design, 195, 108998(2020).

    [15] Lewicki J P, Albo R L F, Alviso C T et al. Pyrolysis-gas chromatography/mass spectrometry for the forensic fingerprinting of silicone engineering elastomers[J]. Journal of Analytical and Applied Pyrolysis, 99, 85-91(2013).

    [16] Kaneko T, Ito S, Minakawa T et al. Degradation mechanisms of silicone rubber under different aging conditions[J]. Polymer Degradation and Stability, 168, 108936(2019).

    [17] Labouriau A, Cady C, Gill J et al. Gamma irradiation and oxidative degradation of a silica-filled silicone elastomer[J]. Polymer Degradation and Stability, 116, 62-74(2015).

    [18] Labouriau A, Cox J D, Schoonover J R et al. Mössbauer, NMR and ATR-FTIR spectroscopic investigation of degradation in RTV siloxane foams[J]. Polymer Degradation and Stability, 92, 414-424(2007).

    [19] Labouriau A, Cady C, Gill J et al. The effects of gamma irradiation on RTV polysiloxane foams[J]. Polymer Degradation and Stability, 117, 75-83(2015).

    [20] Mayer B P, Chinn S C, Maxwell R S et al. Solid state NMR investigation of γ-irradiated composite siloxanes: probing the silica/polysiloxane interface[J]. Polymer Degradation and Stability, 98, 1362-1368(2013).

    [21] Wang P C, Liu Q, Liu B et al. Synergistic effects of gamma irradiation, tensile stress and moisture on the radiolysis of silicone foam[J]. Chinese Journal of Polymer Science, 41, 1969-1978(2023).

    [22] Shen H, Wu Z H, Dou R Y et al. The effect of modified carbon-doped boron nitride on the mechanical, thermal and γ-radiation stability of silicone rubber composites[J]. Polymer Degradation and Stability, 218, 110542(2023).

    [23] Peng Q S, Wang P C, Huang W et al. The irradiation-induced grafting of nano-silica with methyl silicone oil[J]. Polymer, 192, 122315(2020).

    [24] CHEN Hongbing, QIN Ziming, WANG Pucheng et al. Recent progress in irradiation-induced aging of silicones[J]. Journal of Radiation Research and Radiation Processing, 38, >030101(2020).

    [25] Rodriguez J N, Alviso C T, Fox C A et al. NMR methodologies for the detection and quantification of nanostructural defects in silicone networks[J]. Macromolecules, 51, 1992-2001(2018).

    [26] YUE Donghua, JIN Fan, WEI Liming et al. Research progress on the accelerated aging of silicone foam under coupled heat, oxygen and radiation environment[J]. Journal of Radiation Research and Radiation Processing, 40, >030101(2022).

    [27] Roqué X. Møller scattering: a neglected application of early quantum electrodynamics[J]. Archive for History of Exact Sciences, 44, 197-264(1992).

    [28] Kroonblawd M P, Yoshimura A, Goldman N et al. Multiscale strategy for predicting radiation chemistry in polymers[J]. Journal of Chemical Theory and Computation, 18, 5117-5124(2022).

    [29] Yoshimura A, Lamparski M, Giedt J et al. Quantum theory of electronic excitation and sputtering by transmission electron microscopy[J]. Nanoscale, 15, 1053-1067(2023).

    [30] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 140, A1133-A1138(1965).

    [31] Runge E, Gross E K U. Density-functional theory for time-dependent systems[J]. Physical Review Letters, 52, 997-1000(1984).

    [32] Tully J C. Molecular dynamics with electronic transitions[J]. The Journal of Chemical Physics, 93, 1061-1071(1990).

    [33] Elstner M, Porezag D, Jungnickel G et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties[J]. Physical Review B, 58, 7260-7268(1998).

    [34] Miranda Q R A. Density functional theory for chemical reactivity[M]. Conceptual density functional theory and its applications in the chemical domain, 15-44(2018).

    [35] Feliciano G. Equilibrium structures of materials: fundamentals[M]. Materials Modelling using Density Functional Theory: Properties and Predictions, 51-65(2015).

    [36] SONG Hongtao, HUANG Wei, FU Yibei et al. DFT study of the radiation stability of the several primary cross-linked chain structures of methyl-vinyl silicone rubber[J]. Computers and Applied Chemistry, 33, 503-506(2016).

    [37] SONG Hongtao, HUANG Wei, WU Wenhao et al. Theoretical exploration for radiation stability of several silicone secondary chains[J]. Computers and Applied Chemistry, 32, 39-42(2015).

    [38] Yu L, Liu S, Liu B et al. Effect of oxygen on the radiation of silicone rubber determined by gaseous chromatograph and DFT calculation[J]. Nuclear Analysis, 1, 100005(2022).

    [39] Ding Y Q, Lu H F, Mou Q H et al. A DFT study on the cyclization-mechanism during process of thermal vacuum degradation for poly(dimethylsiloxanes)[J]. Polymer Degradation and Stability, 182, 109367(2020).

    [40] Qin Z M, Wang P C, Yang R et al. Fast pyrolysis of silicones at low temperatures catalyzed by anatase titanium dioxide[J]. Polymer Degradation and Stability, 182, 109387(2020).

    [41] Marx D, Hutter J. Getting started: unifying MD and electronic structure[M]. Ab Initio Molecular Dynamics, 11-84(2009).

    [42] Iftimie R, Minary P, Tuckerman M E. Ab initio molecular dynamics: concepts, recent developments, and future trends[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 6654-6659(2005).

    [43] Kroonblawd M P, Goldman N, Lewicki J P. Chemical degradation pathways in siloxane polymers following phenyl excitations[J]. The Journal of Physical Chemistry B, 122, 12201-12210(2018).

    [44] Koskinen P, Mäkinen V. Density-functional tight-binding for beginners[J]. Computational Materials Science, 47, 237-253(2009).

    [45] Kroonblawd M P, Goldman N, Maiti A et al. A quantum-based approach to predict primary radiation damage in polymeric networks[J]. Journal of Chemical Theory and Computation, 17, 463-473(2021).

    [46] Gibson J B, Goland A N, Milgram M et al. Dynamics of radiation damage[J]. Physical Review, 120, 1229-1253(1960).

    [47] de la Rubia T D, Averback R S, Benedek R et al. Role of thermal spikes in energetic displacement cascades[J]. Physical Review Letters, 59, 1930-1933(1987).

    [48] Aradi B, Hourahine B, Frauenheim T. DFTB+, a sparse matrix-based implementation of the DFTB method[J]. The Journal of Physical Chemistry A, 111, 5678-5684(2007).

    [49] Niklasson A M N, Tymczak C J, Challacombe M. Time-reversible Born-Oppenheimer molecular dynamics[J]. Physical Review Letters, 97, 123001(2006).

    [50] Niklasson A M N. Extended Born-Oppenheimer molecular dynamics[J]. Physical Review Letters, 100, 123004(2008).

    [51] Niklasson A M N, Steneteg P, Odell A et al. Extended Lagrangian Born–Oppenheimer molecular dynamics with dissipation[J]. The Journal of Chemical Physics, 130, 214109(2009).

    [52] Zheng G S, Niklasson A M N, Karplus M. Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method[J]. The Journal of Chemical Physics, 135, >044122(2011).

    [53] Kroonblawd M P, Goldman N, Maiti A et al. Polymer degradation through chemical change: a quantum-based test of inferred reactions in irradiated polydimethylsiloxane[J]. Physical Chemistry Chemical Physics, 24, 8142-8157(2022).

    [54] Satoh A. Practice of molecular dynamics simulations[M]. Introduction to Practice of Molecular Simulation, 49-104(2011).

    [55] Rapaport D C[M]. The art of molecular dynamics simulation, 1-10(2004).

    [56] Sushko G B, Solov'yov I A, Solov'yov A V. Molecular dynamics for irradiation driven chemistry: application to the FEBID process[J]. The European Physical Journal D, 70, 217(2016).

    [57] Lou W T, Xie C Y, Guan X F. Molecular dynamic study of radiation-moisture aging effects on the interface properties of nano-silica/silicone rubber composites[J]. NPJ Materials Degradation, 7, 32(2023).

    [58] Lou W T, Xie C Y, Guan X F. Understanding radiation-thermal aging of polydimethylsiloxane rubber through molecular dynamics simulation[J]. NPJ Materials Degradation, 6, 84(2022).

    [59] Liang T, Shin Y K, Cheng Y T et al. Reactive potentials for advanced atomistic simulations[J]. Annual Review of Materials Research, 43, 109-129(2013).

    [60] Han Y, Jiang D D, Zhang J L et al. Development, applications and challenges of ReaxFF reactive force field in molecular simulations[J]. Frontiers of Chemical Science and Engineering, 10, 16-38(2016).

    [61] Russo M F, van Duin A C T. Atomistic-scale simulations of chemical reactions: bridging from quantum chemistry to engineering[J]. Nuclear Instruments and Methods in Physics Research B, 269, 1549-1554(2011).

    [62] Chenoweth K, Cheung S, van Duin A C T et al. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field[J]. Journal of the American Chemical Society, 127, 7192-7202(2005).

    [64] Bao J L, Truhlar D G. Variational transition state theory: theoretical framework and recent developments[J]. Chemical Society Reviews, 46, 7548-7596(2017).

    [65] JIANG Jing. Study on the high strain rate experiments and constitutive model of EPDM thermal insulation material[D](2016).

    [66] Balazs B, Maxwell R, de Teresa S et al. Damage mechanisms of filled siloxanes forpredictive multiscale modeling of aging behavior[J]. MRS Online Proceedings Library, 731, 48(2003).

    [67] Maiti A, Weisgraber T H, Gee R. Modeling the mechanical and aging properties of silicone rubber and foam ― stockpile-historical & additively manufactured materials[R](2014).

    [68] Maiti A, Small W, Kroonblawd M P et al. Constitutive model of radiation aging effects in filled silicone elastomers under strain[J]. The Journal of Physical Chemistry B, 125, 10047-10057(2021).

    [69] Fang H, Li J G, Chen H B et al. Radiation induced degradation of silica reinforced silicone foam: experiments and modeling[J]. Mechanics of Materials, 105, 148-156(2017).

    [70] YAN Shunping, YU Yong, WANG Luobin et al. Constitutive model for silicone rubber foam over a wide range of y radiation[J]. Chinese Journal of Solid Mechanics, 41, 555-566(2020).

    [71] Jia D, Yan S P, Peng Y Q et al. Constitutive modeling of γ-irradiated silicone rubber foams under compression and shear loading[J]. Polymer Degradation and Stability, 183, 109410(2021).

    [72] Wang H Y, Qiu Y, Hu W J et al. Gamma radiation induced compressive response of silicon rubber foam: experiments and modeling[J]. Journal of Materials Research, 34, 2194-2200(2019).

    Tools

    Get Citation

    Copy Citation Text

    Qiang LIU, Ruiyang DOU, Yiqian ZHANG, Wei HUANG, Xianfu MENG, Hongbing CHEN. Progress on the theoretical simulations of the radiation aging of silicon rubber[J]. Journal of Radiation Research and Radiation Processing, 2024, 42(3): 030102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Nov. 26, 2023

    Accepted: Jan. 15, 2024

    Published Online: Jul. 18, 2024

    The Author Email: Hongbing CHEN (陈洪兵)

    DOI:10.11889/j.1000-3436.2023-0106

    Topics