Acta Optica Sinica, Volume. 45, Issue 18, 1801001(2025)

Research Progress and Application Prospects of Carbon Dioxide Detection Lidar for Atmospheric Environment Monitoring Satellite (Invited)

Lingbing Bu1、*, Jingyi Fang1, Zhihua Mao1, Zengchang Fan1, Xuanye Zhang1, Guanchen Che1, Kunling Shan1, Jiqiao Liu2, Lu Zhang3, Sihan Liu4, Yang Zhang5, and Weibiao Chen2
Author Affiliations
  • 1School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • 2Wangzhijiang Innovation Center for Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites/National Satellite Meteorological Center (National Space Weather Monitoring and Warning Center), China Meteorological Administration, Beijing 100081, China
  • 4Satellite Application Center for Ecology and Environment, Beijing 100094, China
  • 5Shanghai Academy of Spaceflight Technology, Shanghai 201109, China
  • show less
    Figures & Tables(15)
    Optical path design drawing of DQ-1 satellite atmospheric detection lidar system[52]
    Schematic diagram of working principle of spaceborne IPDA lidar system[53]
    Shanhaiguan airborne experiment[41]. (a) Changes of DAOD and XCO2 calculated by IWF, PPM and PIM in marine areas; (b) comparison of XCO2 inverted by IPDA lidar with XCO2 from in-situ measurement instruments and corresponding flight routes
    Application results of pseudo-observed data, moving average algorithm and EPICSO algorithm[58]
    Comparison of retrieval results of AVS, AVD and AVX with TCCON observation data[59]
    Kalman smoothing algorithm and moving average algorithm to reconstruct XCO2 observation sequence for point source emission monitoring[60]
    Comparison between estimated annual CO2 emissions derived from DQ-1 and reported values of three emission inventories[66]
    Daytime and nighttime CO2 emission rates of GRES power plant[67]
    Contribution of XCO2 enhancement and biosphere fluxes to local XCO2 enhancement[73]
    Distribution of echo intensity and signal-to-noise ratio at the top of layer clouds, sea surface and surface observed by DQ-1[52]
    Comparison of IPDA lidar height measurement and SRTM elevation data[52-53]
    Satellite footprint distribution and vertical observation comparison results of XCO2[53]
    Zonal average XCO2 changes on globalfrom 2010 to 2013[87]. (a) Land; (b) ocean
    • Table 1. Parameter indicators of spaceborne ACDL system[50-52]

      View table

      Table 1. Parameter indicators of spaceborne ACDL system[50-52]

      ParameterValueParameterValue
      Laser wavelength532.245 nmTelescope apertureФ1000 mm
      1064.490 nmHigh-resolution spectroscopicmeasurement filterIodine molecule filter, aerosol suppression ratio greater than 25 dB
      1572.024 nm (online)Reception channel532 nm aerosol hyperspectral low-gain detection channel
      1572.085 nm (offline)532 nm aerosol hyperspectral high-gain detection channel
      Laser energy≥150 mJ @ 532 nm532 nm aerosol reference parallel detection channel
      ≥110 mJ @ 1064 nm532 nm aerosol vertical polarization detection channel
      ≥75 mJ @ 1572 nm1064 nm aerosol detection channel
      Laser frequency stabilitySeed laser 1572 nm has a stable frequency of 0.3 MHz at 10000 s1572 nm CO2 small gain detection channel
      Seed laser 1064 nm has a stable frequency of 1 MHz at 10000 s1572 nm CO2 high-gain detection channel
      Laser repetition frequency20 Hz @ 1572 nm (on/off dual pulses)Measurement accuracyCO2 column concentration: 1×10-6, aerosol optical parameters: 15% uncertainty
      40 Hz @ 532 nm and 1064 nmQuality850 kg
    • Table 2. Comparison results of XCO2 from IPDA systems of different units with TCCON[51-52,54-56]

      View table

      Table 2. Comparison results of XCO2 from IPDA systems of different units with TCCON[51-52,54-56]

      UnitData time rangeTCCON stations name or numberR2RMSE /10-6SE /10-6MD /10-6
      SIOM2022.06—2023.03110.930.62
      NUIST2022.06—2023.04180.930.73
      SAST2022.0780.950.620.27
      NSMC2022.06Xianghe0.48
      Sodankyla0.80
      WHU2022.06—2022.0950.11.00
    Tools

    Get Citation

    Copy Citation Text

    Lingbing Bu, Jingyi Fang, Zhihua Mao, Zengchang Fan, Xuanye Zhang, Guanchen Che, Kunling Shan, Jiqiao Liu, Lu Zhang, Sihan Liu, Yang Zhang, Weibiao Chen. Research Progress and Application Prospects of Carbon Dioxide Detection Lidar for Atmospheric Environment Monitoring Satellite (Invited)[J]. Acta Optica Sinica, 2025, 45(18): 1801001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: May. 27, 2025

    Accepted: Jul. 15, 2025

    Published Online: Sep. 3, 2025

    The Author Email: Lingbing Bu (lingbingbu@nuist.edu.cn)

    DOI:10.3788/AOS251157

    CSTR:32393.14.AOS251157

    Topics