Chinese Journal of Lasers, Volume. 48, Issue 21, 2108001(2021)
Numerical Simulation on Third-Harmonic Generation of Super-Luminescent Light by Mixing Broadband and Narrowband Lasers
[1] Slater D C, Busch G E, Charatis G et al. Absorption and hot-electron production for 1.05 and 0.53 μm light on spherical targets[J]. Physical Review Letters, 46, 1199-1202(1981).
[2] Perkins L J, Betti R, LaFortune K N et al. Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility[J]. Physical Review Letters, 103, 045004(2009).
[3] Lin W H, Zhu J Q, Ren L. Advances in target alignment and beam-target coupling technologies of laser fusion facility[J]. Chinese Journal of Lasers, 47, 0400001(2020).
[4] Skupsky S, Short R W, Kessler T et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 66, 3456-3462(1989).
[5] Rothenberg J E, Eimerl D, Key M H et al. Illumination uniformity requirements for direct-drive inertial confinement fusion[J]. Proceedings of SPIE, 2633, 162-169(1995).
[6] Liu J Y, Lei F. Measurement of lens-center thickness based on low-coherence interference with transmitted illumination[J]. Laser & Optoelectronics Progress, 56, 121201(2019).
[7] Lu X Y, Zhao C L, Cai Y J. Research progress on methods and applications for phase reconstruction under partially coherent illumination[J]. Chinese Journal of Lasers, 47, 0500016(2020).
[8] Wei X F, Li P. Beam coherence and control of laser fusion driver: retrospect and prospect[J]. High Power Laser and Particle Beams, 32, 121007(2020).
[9] Xu L H, Wang Y F, Jia Y F et al. Research progress of low-coherence laser[J]. Acta Optica Sinica, 41, 0823008(2021).
[10] Gao Y Q, Ji L L, Cui Y et al. kJ low-coherence broadband Nd: glass laser driver facility[J]. High Power Laser and Particle Beams, 32, 011004(2020).
[11] Cui Y, Gao Y Q, Rao D X et al. High-energy low-temporal-coherence instantaneous broadband pulse system[J]. Optics Letters, 44, 2859-2862(2019).
[12] Ji L L, Zhao X H, Liu D et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse[J]. Optics Letters, 44, 4359-4362(2019).
[13] Skeldon M D, Craxton R S, Kessler T et al. Efficient harmonic generation with a broad-band laser[J]. IEEE Journal of Quantum Electronics, 28, 1389-1399(1992).
[14] Pennington D M, Henesian M A, Milam D et al. Efficient broadband third-harmonic frequency conversion via angular dispersion[J]. Proceedings of SPIE, 2633, 645-654(1995).
[15] Osvay K, Ross I N. Efficient tuneable bandwidth frequency mixing using chirped pulses[J]. Optics Communications, 166, 113-119(1999).
[16] Qian L J. Chirp matched third harmonic conversion for broad-band lasers[J]. Acta Optica Sinica, 15, 662-664(1995).
[17] Pronko M S, Lehmberg R H, Obenschain S et al. Efficient second harmonic conversion of broad-band high-peak-power Nd: glass laser radiation using large-aperture KDP crystals in quadrature[J]. IEEE Journal of Quantum Electronics, 26, 337-347(1990).
[18] Ji L L, Zhu B Q, Liu C et al. Optimization of quadrature frequency conversion with type-II KDP for second harmonic generation of the nanosecond chirp pulse at 1053 nm[J]. Chinese Optics Letters, 12, 031902(2014).
[19] Webb M S, Eimerl D, Velsko S P. Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP[J]. Journal of the Optical Society of America B, 9, 1118-1127(1992).
[20] Chen Y, Yuan P, Qian L J et al. Numerical study on the efficient generation of 351 nm broadband pulses by frequency mixing of broadband and narrowband Nd: glass lasers[J]. Optics Communications, 283, 2737-2741(2010).
[21] Chen Y. Efficient third-harmonic generation of broadband Nd: glass by frequency mxing of broadband and narrowband Nd: glass lasers[D](2010).
[22] Zhao K, Yuan P, Zhong H Z et al. Narrowband pulse-enhanced upconversion of chirped broadband pulses[J]. Journal of Optics, 12, 035206(2010).
[23] Follett R K, Shaw J G, Myatt J F et al. Thresholds of absolute instabilities driven by a broadband laser[J]. Physics of Plasmas, 26, 062111(2019).
[24] Dorrer C. Statistical analysis of incoherent pulse shaping[J]. Optics Express, 17, 3341-3352(2009).
[25] Ji L L, Zhao X H, Liu D et al. Research progress of low-temporal-coherence light frequency conversion technology for high power Nd: glass laser system[J]. High Power Laser and Particle Beams, 32, 112009(2020).
[26] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).
[27] Craxton R. High efficiency frequency tripling schemes for high-power Nd: glass lasers[J]. IEEE Journal of Quantum Electronics, 17, 1771-1782(1981).
[28] Auerbach J M, Eimerl D, Milam D et al. Perturbation theory for electric-field amplitude and phase ripple transfer in frequency doubling and tripling[J]. Applied Optics, 36, 606-618(1997).
[29] Wegner P J, Henesian M A, Speck D R et al. Harmonic conversion of large-aperture 105 μm laser beams for inertial-confinement fusion research[J]. Applied Optics, 31, 6414-6426(1992).
Get Citation
Copy Citation Text
Xu Zhang, Lailin Ji, Dong Liu, Yanqi Gao, Zhan Sui, Xiaohui Zhao, Xia Xiang. Numerical Simulation on Third-Harmonic Generation of Super-Luminescent Light by Mixing Broadband and Narrowband Lasers[J]. Chinese Journal of Lasers, 2021, 48(21): 2108001
Category: nonlinear optics
Received: Mar. 24, 2021
Accepted: Apr. 21, 2021
Published Online: Oct. 18, 2021
The Author Email: Zhao Xiaohui (xhzhao_silp@163.com), Xiang Xia (xiaxiang@uestc.edu.cn)