Chinese Journal of Lasers, Volume. 48, Issue 13, 1301001(2021)

Design of Flat Optical Frequency Comb Based on Lithium Niobate Optical Waveguide

Yu Liu, Yi Deng, Hang Wei, Chunjiang Wu, and Suchun Feng*
Author Affiliations
  • Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    References(42)

    [1] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).

    [2] Bartels A, Heinecke D, Diddams S A. Passively mode-locked 10 GHz femtosecond Ti: sapphire laser[J]. Optics Letters, 33, 1905-1907(2008).

    [6] Beha K, Cole D C, Del’Haye P et al. Electronic synthesis of light[J]. Optica, 4, 406-411(2017).

    [10] Kippenberg T J, Gaeta A L, Lipson M et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).

    [13] Hu Y J, Wang S X, Wang D W et al. Research progress of mid-infrared micro-ring resonator and its application[J]. Laser & Optoelectronics Progress, 57, 230004(2020).

    [14] Taccheo S, Ennser K, Forin D et al. Supercontinuum-based devices for telecom applications[C]. //2006 International Conference on Transparent Optical Networks, June 18-22, 2006, Nottingham, UK., 32-36(2006).

    [16] Heidt A M, Feehan J S, Price J H V et al. Limits of coherent supercontinuum generation in normal dispersion fibers[J]. Journal of the Optical Society of America B, 34, 764-775(2017).

    [23] Duchesne D, Peccianti M, Lamont M R E et al. Supercontinuum generation in a high index doped silica glass spiral waveguide[J]. Optics Express, 18, 923-930(2010).

    [24] Ji X C, Barbosa F A S, Roberts S P et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold[J]. Optica, 4, 619-624(2017).

    [25] Du Q Y, Luo Z Q, Zhong H K et al. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide[J]. Photonics Research, 6, 506-510(2018).

    [30] Wu C J, Feng S C. Generation of high repetition rate broadband flat coherent optical frequency comb based on tantalum pentoxide integrated nonlinear optical waveguide[J]. Acta Photonica Sinica, 48, 1048003(2019).

    [31] Lamee K F, Carlson D R, Newman Z L et al. Nanophotonic tantala waveguides for supercontinuum generation pumped at 1560 nm[J]. Optics Letters, 45, 4192-4195(2020).

    [34] Zhou J X, Gao R H, Lin J T et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching[J]. Chinese Physics Letters, 37, 084201(2020).

    [36] Zelmon D E, Small D L, Jundt D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide-doped lithium niobate[J]. Journal of the Optical Society of America B, 14, 3319-3322(1997).

    [38] Dudley J M, Taylor J R. Supercontinuum generation in optical fibers[M](2009).

    [41] Agrawal G. Nonlinear fiber optics[M]. 5th ed(2013).

    Tools

    Get Citation

    Copy Citation Text

    Yu Liu, Yi Deng, Hang Wei, Chunjiang Wu, Suchun Feng. Design of Flat Optical Frequency Comb Based on Lithium Niobate Optical Waveguide[J]. Chinese Journal of Lasers, 2021, 48(13): 1301001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Dec. 2, 2020

    Accepted: Jan. 8, 2021

    Published Online: Jun. 23, 2021

    The Author Email: Feng Suchun (schfeng@bjtu.edu.cn)

    DOI:10.3788/CJL202148.1301001

    Topics