Journal of Synthetic Crystals, Volume. 51, Issue 9-10, 1573(2022)

Development of Rare-Earth Ion Doped Fluoride Laser Crystal

ZHAO Chengchun1、*, ZHANG Peixiong1,2, LI Shanming1, FANG Qiannan1, XU Min1, CHEN Zhenqiang2, and HANG Yin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(114)

    [1] [1] GATTASS R R, MAZUR E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225.

    [2] [2] WALSH B M, LEE H R, BARNES N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169: 400-405.

    [3] [3] LI W Q, GAN Z B, YU L H, et al. 339 J high-energy Ti∶sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 2018, 43(22): 5681-5684.

    [4] [4] OKADA F, TOGAWA S, OHTA K, et al. Solid-state ultraviolet tunable laser: a Ce3+ doped LiYF4 crystal[J]. Journal of Applied Physics, 1994, 75(1): 49-53.

    [5] [5] MA C Q, ZHANG Y, GUO J W, et al. A 3.9 μm Ho3+∶BaY2F8 laser directly pumped by laser diodes[J]. Electronics Letters, 2021, 57(20): 779-781.

    [6] [6] LIU H L, ZHAO Z X, XIA J, et al. Tunable Pr3+∶LiYF4 lasers in the green-red spectral region[J]. Journal of Applied Physics, 2021, 129(8): 083102.

    [7] [7] SALAN S, FORNONI M T, BULOU A, et al. Lattice dynamics of fluoride scheelites: I. Raman and infrared study of LiYF4 and LiLnY4 (Ln∶Ho, Er, Tm and Yb)[J]. Journal of Physics: Condensed Matter, 1997, 9(32): 6941-6956.

    [8] [8] AUZEL F, PELL F. Bottleneck in multiphonon nonradiative transitions[J]. Physical Review B, 1997, 55(17): 11006-11009.

    [9] [9] SOROKIN P P, STEVENSON M J. Stimulated infrared emission from trivalent uranium[J]. Physical Review Letters, 1960, 5(12): 557-559.

    [10] [10] KAISER W, GARRETT C G B, WOOD D L. Fluorescence and optical maser effects in CaF2∶Sm++[J]. Physical Review, 1961, 123(3): 766-776.

    [11] [11] KAMINSKII A A. Laser crystals and ceramics: recent advances[J]. Laser & Photonics Review, 2007, 1(2): 93-177.

    [12] [12] NIE H K, ZHANG P X, ZHANG B T, et al. Diode-end-pumped Ho, Pr∶LiLuF4 bulk laser at 2.95 μm[J]. Optics Letters, 2017, 42(4): 699-702.

    [13] [13] VEJKAR R, ULC J, NMEC M, et al. Compact diode-pumped CW and Q-switched 2.8 μm Er∶YLF laser[J]. Josa B, 2021, 38(8): B26-B29.

    [14] [14] SIDERS, GALVIN, ERLANDSON, et al. Wavelength scaling of laser Wakefield acceleration for the EuPRAXIA design point[J]. Instruments, 2019, 3(3): 44.

    [15] [15] TAMER I, REAGAN B A, GALVIN T, et al. Demonstration of a compact, multi-joule, diode-pumped Tm∶YLF laser[J]. Optics Letters, 2021, 46(20): 5096-5099.

    [16] [16] WANG C, WEI H, WANG J F, et al. 1 J, 1 Hz lamp-pumped high-gain Nd∶phosphate glass laser amplifier[J]. Chinese Optics Letters, 2017, 15(1): 011401.

    [17] [17] QIN Z P, XIE G Q, MA J, et al. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd, Y∶CaF2 disordered crystal[J]. Optics Letters, 2014, 39(7): 1737-1739.

    [18] [18] ZHU J F, ZHANG L J, GAO Z Y, et al. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser[J]. Laser Physics Letters, 2015, 12(3): 035801.

    [19] [19] METZ P W, HASSE K, PARISI D, et al. Continuous-wave Pr3+∶BaY2F8 and Pr3+∶LiYF4 lasers in the cyan-blue spectral region[J]. Optics Letters, 2014, 39(17): 5158-5161.

    [20] [20] OSTROUMOV V, SEELERT W. 1 W of 261 nm CW generation in a Pr3+∶LiYF4 laser pumped by an optically pumped semiconductor laser at 479 nm[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6871, Solid State Lasers XVII: Technology and Devices, San Jose, California, USA. 2008, 6871: 450-453.

    [21] [21] LIN X J, ZHU Y, JI S H, et al. Highly efficient LD-pumped 607 nm high-power CW Pr3+∶YLF lasers[J]. Optics & Laser Technology, 2020, 129: 106281.

    [22] [22] LIN X J, CHEN M P, FENG Q C, et al. LD-pumped high-power CW Pr3+∶YLF laguerre-Gaussian lasers at 639 nm[J]. Optics & Laser Technology, 2021, 142: 107273.

    [23] [23] LUO S Y, YAN X G, CUI Q, et al. Power scaling of blue-diode-pumped Pr∶YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm[J]. Optics Communications, 2016, 380: 357-360.

    [24] [24] SOTTILE A, PARISI D, TONELLI M. Multiple polarization orange and red laser emissions with Pr∶BaY2Fs[J]. Optics Express, 2014, 22(11): 13784-13791.

    [25] [25] YU H, QIAN X B, GUO L Y, et al. Pr∶Ca1-xRxF2+x (R=Y or Gd) crystals: modulated blue, orange and red emission spectra with the proportion of R3+ ions[J]. Optical Materials, 2018, 78: 88-93.

    [26] [26] KRNKEL C, MARZAHL D T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers[J]. Laser & Photonics Reviews, 2016, 10(4): 548-568.

    [27] [27] CASTELLANO-HERNNDEZ E, KALUSNIAK S, METZ P W, et al. Diode-pumped laser operation of Tb 3+∶LiLuF4 in the green and yellow spectral range[J]. Laser & Photonics Reviews, 2020, 14(2): 1900229.

    [28] [28] DUBINSKII M A, CEFALAS A C, SARANTOPOULOU E, et al. Efficient LaF3∶Nd3+-based vacuum-ultraviolet laser at 172 nm[J]. Josa B, 1992, 9(7): 1148-1150.

    [29] [29] COUTTS D W, MCGONIGLE A J S. Cerium-doped fluoride lasers[J]. IEEE Journal of Quantum Electronics, 2004, 40(10): 1430-1440.

    [30] [30] VOLPI A, KRMER K W, BINER D, et al. Bridgman growth of laser-cooling-grade LiLuF4∶Yb3+ single crystals[J]. Crystal Growth & Design, 2021, 21(4): 2142-2153.

    [31] [31] HEHLEN M P, MENG J W, ALBRECHT A R, et al. First demonstration of an all-solid-state optical cryocooler[J]. Light: Science & Applications, 2018, 7: 15.

    [32] [32] YANG Z, MENG J W, ALBRECHT A R, et al. Radiation-balanced thin-disk lasers in Yb∶YAG and Yb∶YLF (conference presentation)[C]//SPIE OPTO. Proc SPIE 10936, Photonic Heat Engines: Science and Applications, San Francisco, California, USA. 2019, 10936: 109360O.

    [33] [33] ROGIN P, HULLIGER J. Liquid phase epitaxy of LiYF4[J]. Journal of Crystal Growth, 1997, 179(3/4): 551-558.

    [34] [34] THOMA R E, BRUNTON G D, PENNEMAN R A, et al. Equilibrium relations and crystal structure of lithium fluorolanthanate phases[J]. Inorganic Chemistry, 1970, 9(5): 1096-1101.

    [35] [35] ZHANG P X, YIN J G, ZHANG B T, et al. Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal[J]. Optics Letters, 2014, 39(13): 3942-3945.

    [36] [36] LAIHO R, LAKKISTO M. Investigation of the refractive indices of LaF3, CeF3, PrF3 and NdF3[J]. Philosophical Magazine B, 1983, 48(2): 203-207.

    [37] [37] VASYLIEV V, VILLORA E G, NAKAMURA M, et al. UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE=Tb, Dy, Ho, Er and Yb), PrF3 and CeF3[J]. Optics Express, 2012, 20(13): 14460-14470.

    [38] [38] AGGARWAL R L, RIPIN D J, OCHOA J R, et al. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range[J]. Journal of Applied Physics, 2005, 98(10): 103514.

    [39] [39] KLEIN P H, CROFT W J. Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°-300°K[J]. Journal of Applied Physics, 1967, 38(4): 1603-1607.

    [40] [40] AGGARWAL I D, SHAW L B, SANGHERA J S. Chalcogenide glass fiber-based MID-IR sources and applications[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6453, Fiber Lasers Ⅳ: Technology, Systems, and Applications, San Jose, California, USA. 2007, 6453: 232-241.

    [41] [41] PRATISTO H, FRENZ M, ITH M, et al. Temperature and pressure effects during erbium laser stapedotomy[J]. Lasers in Surgery and Medicine, 1996, 18(1): 100-108.

    [42] [42] VODOPYANOV K L. Mid-infrared optical parametric generator with extra-wide (3-19-μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells[J]. Josa B, 1999, 16(9): 1579-1586.

    [43] [43] GODARD A. Infrared (2-12 μm) solid-state laser sources: a review[J]. Comptes Rendus Physique, 2007, 8(10): 1100-1128.

    [44] [44] WANG J T, CHENG T Q, WANG L, et al. Compensation of strong thermal lensing in an LD side-pumped high-power Er∶YSGG laser[J]. Laser Physics Letters, 2015, 12(10): 105004.

    [45] [45] RABINOVICH W S, BOWMAN S R, FELDMAN B J, et al. Tunable laser pumped 3 μm Ho∶YAlO3 laser[J]. IEEE Journal of Quantum Electronics, 1991, 27(4): 895-897.

    [46] [46] DJEU N, HARTWELL V E, KAMINSKII A A, et al. Room-temperature 3.4 μm Dy∶BaYb2F8 laser[J]. Optics Letters, 1997, 22(13): 997-999.

    [47] [47] SANDROCK T, DIENING A, HUBER G. Laser emission of erbium-doped fluoride bulk glasses in the spectral range from 2.7 to 2.8 μm[J]. Optics Letters, 1999, 24(6): 382-384.

    [48] [48] ZHANG P X, HANG Y, LI Z, et al. Sensitization and deactivation effects of Nd3+ on the Ho3+∶3.9 μm emission in a PbF2 crystal[J]. Optics Letters, 2017, 42(13): 2559-2562.

    [49] [49] WANG Y, LI J F, ZHU Z J, et al. Mid-infrared emission in Dy∶YAlO3 crystal[J]. Optical Materials Express, 2014, 4(6): 1104-1111.

    [50] [50] ZHANG P X, ZHANG B T, HONG J Q, et al. Enhanced emission of 2.86 μm from diode-pumped Ho3+/Yb3+-codoped PbF2 crystal[J]. Optics Express, 2015, 23(4): 3920-3927.

    [51] [51] ZHANG P X, HANG Y, ZHANG L H. Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal[J]. Optics Letters, 2012, 37(24): 5241-5243.

    [52] [52] LI S M, ZHANG L H, HE M Z, et al. Effective enhancement of 2.87 μm fluorescence via Yb3+ in Ho3+∶LaF3 laser crystal[J]. Journal of Luminescence, 2018, 203: 730-734.

    [53] [53] LI S M, ZHANG L H, HE M Z, et al. Nd3+ as effective sensitizing and deactivating ions for the 2.87 μm lasers in Ho3+ doped LaF3 crystal[J]. Journal of Luminescence, 2019, 208: 63-66.

    [54] [54] LI X, ZHANG P X, ZHU S Q, et al. Enhanced 2.75 μm emissions of Er3+ via Eu3+ deactivation in PbF2 crystal[J]. Journal of Luminescence, 2019, 210: 164-168.

    [55] [55] WANG Y H, ZHANG P X, LI X, et al. Spectroscopy and energy transfer mechanism of Tb3+ strengthened Er3+ 27 μm emission in PbF2 crystal[J]. Optical Materials Express, 2018, 9(1): 13.

    [56] [56] LI X, ZHANG P X, YIN H, et al. Sensitization and deactivation effects of Nd3+ on the Er3+: 2.7 μm emission in PbF2 crystal[J]. Optical Materials Express, 2019, 9(4): 1698-1708.

    [57] [57] LI S M, ZHANG L H, ZHANG P X, et al. Nd3+ as effective sensitization and deactivation ions in Nd, Er∶LaF3 crystal for the 2.7 μm lasers[J]. Journal of Alloys and Compounds, 2020, 827: 154268.

    [58] [58] WANG Y H, JIANG C, ZHANG P X, et al. Bandwidth enhancement of 3 μm emission and energy transfer mechanism in Yb3+/Ho3+/Dy3+ co-doped PbF2 crystal[J]. Journal of Luminescence, 2019, 212: 160-165.

    [59] [59] WANG Y H, ZHANG P X, ZHU S Q, et al. Broadened effect of Dy around 3 μm of Yb/Er/Dy∶PbF2 crystal for broadband tunable lasers[J]. Journal of the American Ceramic Society, 2020, 103(8): 4445-4452.

    [60] [60] HUANG X B, WANG Y H, ZHANG P X, et al. Efficiently strengthen and broaden 3 μm fluorescence in PbF2 crystal by Er3+/Ho3+ as co-luminescence centers and Pr3+ deactivation[J]. Journal of Alloys and Compounds, 2019, 811: 152027.

    [61] [61] FAN M Q, LI T, LI G Q, et al. Passively Q-switched Ho, Pr∶LiLuF4 laser with graphitic carbon nitride nanosheet film[J]. Optics Express, 2017, 25(11): 12796-12803.

    [62] [62] NIE H K, ZHANG P X, ZHANG B T, et al. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+∶LiLuF4 bulk laser at 2.95 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-5.

    [63] [63] YANG Y L, NIE H K, ZHANG B T, et al. Passively Q-switched mode-locked Ho, Pr∶LiLuF4 laser operating at 2.9 μm with semiconductor saturable absorber mirror[J]. Applied Physics Express, 2018, 11(11): 112704.

    [64] [64] GUO L, LI T, ZHANG S Y, et al. Passively Q-switched Ho, Pr∶LiLuF4 bulk laser at 295 μm using WS2 saturable absorbers[J]. Optical Materials Express, 2017, 7(6): 2090.

    [65] [65] LIU X, ZHANG S, YAN Z, et al. WSe2 as a saturable absorber for a passively Q-switched Ho, Pr∶LLF laser at 2.95 μm[J]. Optical Materials Express, 2018, 8(5): 1213-1220.

    [66] [66] FAN X W, NIE H K, ZHAO S, et al. MXene saturable absorber for nanosecond pulse generation in a mid-infrared Ho, Pr∶LLF bulk laser[J]. Optical Materials Express, 2019, 9(10): 3977-3984.

    [67] [67] ZHANG S Y, LIU X X, GUO L, et al. Passively Q-switched Ho, Pr∶LLF bulk slab laser at 2.95 μm based on MoS2 saturable absorber[J]. IEEE Photonics Technology Letters, 2017, 29(24): 2258-2261.

    [68] [68] YAN Z Y, LI G Q, LI T, et al. Passively Q-switched Ho, Pr∶LiLuF4 laser at 2.95 μm using MoSe2[J]. IEEE Photonics Journal, 2017, 9(5): 1-7.

    [69] [69] YANG Y L, ZHANG L H, LI S M, et al. Growth and mid-infrared luminescence property of Ho3+ doped CeF3 single crystal[J]. Infrared Physics & Technology, 2020, 105: 103230.

    [70] [70] XIONG J, PENG H Y, HU P C, et al. Optical characterization of Tm3+ in LiYF4 and LiLuF4 crystals[J]. Journal of Physics D: Applied Physics, 2010, 43(18): 185402.

    [71] [71] YIN J G, HANG Y, HE X H, et al. Transition intensities and excited state relaxation dynamics of Tm3+ in Tm∶PbF2 crystal[J]. Laser Physics, 2012, 22(3): 609-613.

    [72] [72] HONG J Q, ZHANG L H, XU M, et al. Optical characterization of Tm3+ in LaF3 single crystal[J]. Infrared Physics & Technology, 2017, 82: 50-55.

    [73] [73] ZHAO C C, HANG Y, ZHANG L H, et al. Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers[J]. Optical Materials, 2011, 33(11): 1610-1615.

    [74] [74] ZHANG P X, ZHANG L H, HONG J Q, et al. Spectroscopic properties of Ho3+-doped PbF2 single crystal for 2 μm[J]. Optical Materials, 2015, 46: 389-392.

    [75] [75] HONG J Q, ZHANG L H, ZHANG P X, et al. Ho∶LaF3 single crystal as potential material for 2 μm and 2.9 μm lasers[J]. Infrared Physics & Technology, 2016, 76: 636-640.

    [76] [76] CHENG X J, ZHANG S Y, XU J, et al. High-power diode-end-pumped Tm∶LiLuF4 slab lasers[J]. Optics Express, 2009, 17(17): 14895-14901.

    [78] [78] ZHANG P X, WAN Y B, YIN J G, et al. Low-phonon PbF2∶Tm3+-doped crystal for 1.9 μm lasing[J]. Laser Physics Letters, 2014, 11(11): 115802.

    [79] [79] LI S M, ZHANG L H, LI C, et al. Growth, thermal conductivity, spectra, and 2 μm continuous-wave characteristics of Tm3+, Ho3+ co-doped LaF3 crystal[J]. Journal of Luminescence, 2019, 210: 142-145.

    [80] [80] ZHANG Y S, CAI Y Q, XU B, et al. Extending the wavelength tunability from 2.01 to 2.1 μm and simultaneous dual-wavelength operation at 2.05 and 2.3 μm in diode-pumped Tm∶YLF lasers[J]. Journal of Luminescence, 2020, 218: 116873.

    [81] [81] PENG H Y, ZHANG K, ZHANG L H, et al. Spectral properties and laser performance of Tm, Ho∶LuLF4 crystal[C]//Proc SPIE 7276, Photonics and Optoelectronics Meetings (POEM) 2008: Laser Technology and Applications, 2009, 7276: 185-192.

    [85] [85] DAI Y F, LI Y Y, ZOU X, et al. Compact passively Q-switched Tm∶YLF laser with a polycrystalline Cr∶ZnS saturable absorber[J]. Optics & Laser Technology, 2014, 57: 202-205.

    [86] [86] ZOU X, LENG Y X, LI Y Y, et al. Passively Q-switched mode-locked Tm∶LLF laser with a MoS2 saturable absorber[J]. Chinese Optics Letters, 2015, 13(8): 081405.

    [87] [87] L Y F, YIN X D, XIA J, et al. All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixing blue laser at 488 nm[J]. Laser Physics Letters, 2009, 6(12): 860.

    [88] [88] ZHAO C C, ZHANG L H, HANG Y, et al. Optical spectroscopy of Nd3+ in LiLuF4 single crystals[J]. Journal of Physics D: Applied Physics, 2010, 43(49): 495403.

    [89] [89] ZHAO C C, HE M Z, HANG Y, et al. Spectroscopic characterization and diode-pumped 910 nm laser of Nd∶LiLuF4 crystal[J]. Laser Physics, 2012, 22(5): 918-921.

    [90] [90] LI R, YU T, ZHANG L H, et al. 1047-nm all-solid-state laser based on Nd∶LuLF[J]. Chinese Optics Letters, 2011, 9(2): 55-56.

    [91] [91] ZHANG P X, YIN J G, ZHANG R, et al. Crystal growth, spectroscopic characterization and laser performance of Tm/Mg∶LiNbO3 crystal[J]. Laser Physics, 2014, 24(3): 263-268

    [92] [92] WANG M, ZHANG S, TANG Y, et al. Performance of actively Q-switched Nd∶LiLuF4 crystal end-pumped by a 792 nm laser diode[J]. Applied Physics B, 2011, 104(4): 829-833.

    [93] [93] LI H Q, ZHANG R, TANG Y L, et al. Efficient dual-wavelength Nd∶LuLiF4 laser[J]. Optics Letters, 2013, 38(21): 4425-4428.

    [94] [94] ZHANG P X, WAN Y B, YIN J G, et al. Spectroscopic, thermal and laser characteristics of Nd∶LiLuF4 for 1314 nm laser[J]. Laser Physics Letters, 2014, 11(11): 115803.

    [95] [95] HONG J Q, ZHANG L H, ZHANG P X, et al. Growth, optical characterization and evaluation of laser properties of Nd∶LaF3 crystal[J]. Journal of Alloys and Compounds, 2015, 646: 706-709.

    [96] [96] YANG Y L, ZHANG L H, QUAN C, et al. Growth, thermal, and polarized spectroscopic properties of Nd∶CeF3 crystal for dual-wavelength lasers[J]. Journal of Luminescence, 2020, 227: 117558.

    [97] [97] HONG J Q, ZHANG L H, LI J, et al. Spectroscopic, thermal and CW dual-wavelength laser characteristics of Nd∶LaF3 single crystal[J]. Optical Materials, 2016, 53: 10-13.

    [98] [98] YIN J G, HANG Y, LIANG X Y, et al. Yb, Na∶PbF2: a potential new high-power laser material[J]. Optics Letters, 2010, 35(20): 3435-3437.

    [99] [99] YIN J G, HANG Y, HE X M, et al. Crystal growth and spectroscopic characterization of Yb-doped and Yb, Na-codoped PbF2 laser crystals[J]. Journal of Alloys and Compounds, 2011, 509(23): 6567-6570.

    [100] [100] YIN J G, HANG Y, HE X M, et al. Room-temperature diode-pumped Yb, Na∶PbF2 laser[J]. Optics Letters, 2012, 37(1): 109-111.

    [101] [101] YIN J G, HANG Y, HE X M, et al. Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature[J]. Laser Physics Letters, 2012, 9(2): 126-130.

    [102] [102] AGNESI A, GREBORIO A, PIRZIO F, et al. Femtosecond Nd∶glass lasers pumped by single-mode laser diodes and mode locked with carbon nanotube or semiconductor saturable absorber mirrors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 74-80.

    [103] [103] RYAN J R, BEACH R. Optical absorption and stimulated emission of neodymium in yttrium lithium fluoride[J]. Josa B, 1992, 9(10): 1883-1887.

    [104] [104] LI C, LENG Y X, LI S M, et al. Demonstration of diode-pumped Yb∶LaF3 and Tm, Ho∶LaF3 lasers[J]. Applied Sciences, 2019, 9(2): 334.

    [105] [105] NAKATSU Y, NAGAO Y, KOZURU K, et al. High-efficiency blue and green laser diodes for laser displays[C]//SPIE OPTO. Proc SPIE 10918, Gallium Nitride Materials and Devices XIV, San Francisco, California, USA. 2019, 10918: 99-107.

    [106] [106] LING Z, YI Y, YANG Z, et al. All-solid-state dual end pumped YVO4∶Nd/LBO blue laser with 21.8 W output power at 457 nm[J]. Optics and Spectroscopy, 2014, 116(3): 470-472.

    [107] [107] KANTOLA E, LEINONEN T, RANTA S N, et al. High-efficiency 20 W yellow VECSEL[J]. Optics Express, 2014, 22(6): 6372-6380.

    [108] [108] SANDROCK T, SCHEIFE H, HEUMANN E, et al. High-power continuous-wave upconversion fiber laser at room temperature[J]. Optics Letters, 1997, 22(11): 808-810.

    [109] [109] LI N, LIU B, SHI J J, et al. Research progress of rare-earth doped laser crystals in visible region[J]. Journal of Inorganic Materials, 2019, 34(6): 573.

    [110] [110] DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds[J]. Physical Review B Condensed Matter, 2000, 62(23): 15640-15649.

    [111] [111] BOWMAN S R, O'CONNOR S, CONDON N J. Diode pumped yellow dysprosium lasers[J]. Optics Express, 2012, 20(12): 12906-12911.

    [112] [112] LIMPERT J, ZELLMER H, RIEDEL P, et al. Laser oscillation in yellow and blue spectral range in Dy3+∶ZBLAN[J]. Electronics Letters, 2000, 36(16): 1386.

    [113] [113] QU B, XU B, LUO S Y, et al. InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+∶LiYF4 crystal[J]. IEEE Photonics Technology Letters, 2015, 27(4): 333-335.

    [114] [114] RICHTER A, HEUMANN E, HUBER G, et al. Power scaling of semiconductor laser pumped Praseodymium-lasers[J]. Optics Express, 2007, 15(8): 5172-5178.

    [115] [115] LI S M, ZHANG L H, ZHANG P X, et al. Spectroscopic characterizations of Dy∶LaF3 crystal[J]. Infrared Physics & Technology, 2017, 87: 65-71.

    [116] [116] YANG Y L, ZHANG L H, LI S M, et al. Crystal growth and 570 nm emission of Dy3+ doped CeF3 single crystal[J]. Journal of Luminescence, 2019, 215: 116707.

    [117] [117] ZHANG Y X, YANG Y L, ZHANG L H, et al. Watt-level continuous-wave and passively Q-switched red lasers pumped by a single blue laser diode[J]. Chinese Optics Letters, 2019, 17(7): 071402.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Chengchun, ZHANG Peixiong, LI Shanming, FANG Qiannan, XU Min, CHEN Zhenqiang, HANG Yin. Development of Rare-Earth Ion Doped Fluoride Laser Crystal[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1573

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 19, 2022

    Accepted: --

    Published Online: Nov. 18, 2022

    The Author Email: ZHAO Chengchun (zhaocc205@siom.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics