Semiconductor Optoelectronics, Volume. 46, Issue 4, 608(2025)

Ultrashort Optical Pulse Generation Based on Thin-Film Lithium Niobate Electro-Optic Modulators with Slow-Wave Electrode

LIU Jiaxu1, ZHOU Qiaoling1, ZHOU Jingjie1, ZHENG Shaonan1, ZHAO Xingyan1, QIU Yang1, DONG Yuan1, ZHONG Qize1, and HU Ting1,2
Author Affiliations
  • 1School of Microelectronics
  • 2Shanghai Key Laboratory of Intelligent Connected Vehicle Interaction Chip and System, Shanghai University, Shanghai 201800, CHN
  • show less
    References(32)

    [1] [1] Lundberg L, Mazur M, Mirani A, et al. Phase-coherent lightwave communications with frequency combs[J]. Nature Communications, 2020, 11: 201.

    [2] [2] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications[J]. Nature, 2017, 546(7657): 274-279.

    [3] [3] Torres-Company V, Schrder J, Flp A, et al. Laser frequency combs for coherent optical communications[J]. Journal of Lightwave Technology, 2019, 37(7): 1663-1670.

    [4] [4] Picqu N, Hnsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 2019, 13(3): 146-157.

    [5] [5] Ideguchi T, Holzner S, Bernhardt B, et al. Coherent Raman spectro-imaging with laser frequency combs[J]. Nature, 2013, 502(7471): 355-358.

    [6] [6] Udem T, Holzwarth R, Hnsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.

    [7] [7] McMahon P L, Marandi A, Haribara Y, et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections[J]. Science, 2016, 354(6312): 614-617.

    [8] [8] Newman Z L, Maurice V, Drake T, et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 2019, 6(5): 680-685.

    [9] [9] Obrzud E, Lecomte S, Herr T. Temporal solitons in microresonators driven by optical pulses[J]. Nature Photonics, 2017, 11(9): 600-607.

    [10] [10] Kim J, Song Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.

    [11] [11] Van Gasse K, Uvin S, Moskalenko V, et al. Recent advances in the photonic integration of mode-locked laser diodes[J]. IEEE Photonics Technology Letters, 2019, 31(23): 1870-1873.

    [12] [12] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nature Photonics, 2019, 13(3): 158-169.

    [13] [13] Zhang X, Wang C, Cheng Z, et al. Advances in resonator-based Kerr frequency combs with high conversion efficiencies[J]. NPJ Nanophotonics, 2024, 1: 26.

    [14] [14] Zhang Y, Tao C, Luo S, et al. Ultra-fast optical time-domain transformation techniques[J]. Nature Reviews Methods Primers, 2025, 5: 11.

    [15] [15] Carlson D R, Hickstein D D, Zhang W, et al. Ultrafast electro-optic light with subcycle control[J]. Science, 2018, 361(6409): 1358-1363.

    [16] [16] Wang X, Li Z, Chen J, et al. Integrated thin-film lithium niobate electro-optic frequency comb for picosecond optical pulse train generation[J]. Applied Physics Letters, 2024, 124(20): 201101.

    [17] [17] Yu M, Barton III D, Cheng R, et al. Integrated femtosecond pulse generator on thin-film lithium niobate[J]. Nature, 2022, 612(7939): 252-258.

    [18] [18] Zhang X, Zhang J, Yin K, et al. Sub-100 fs all-fiber broadband electro-optic optical frequency comb at 1.5 μm[J]. Optics Express, 2020, 28(23): 34761-34771.

    [19] [19] Sekhar P, Fredrick C, Carlson D R, et al. 20 GHz fiber-integrated femtosecond pulse and supercontinuum generation with a resonant electro-optic frequency comb[J]. APL Photonics, 2023, 8(11): 116111.

    [20] [20] Jang Y S, Park J, Jin J. Comb-mode resolved spectral domain interferometer enabled by a broadband electro-optic frequency comb[J]. Photonics Research, 2023, 11(1): 72-80.

    [21] [21] Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics[J]. Laser & Photonics Reviews, 2014, 8(3): 368-393.

    [22] [22] Chen G, Li N, Da Ng J, et al. Advances in lithium niobate photonics: development status and perspectives[J]. Advanced Photonics, 2022, 4(3): 034003.

    [23] [23] Pan B, Liu H, Huang Y, et al. Perspective on lithium-niobate-on-insulator photonics utilizing the electro-optic and acousto-optic effects[J]. ACS Photonics, 2023, 10(7): 2078-2090.

    [24] [24] Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536-1537.

    [25] [25] Valdez F, Mere V, Wang X, et al. Integrated O- and C-band silicon-lithium niobate Mach-Zehnder modulators with 100 GHz bandwidth, low voltage, and low loss[J]. Optics Express, 2023, 31(4): 5273-5289.

    [26] [26] Chen G, Chen K, Gan R, et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode[J]. APL Photonics, 2022, 7(2): 026103.

    [27] [27] Kharel P, Reimer C, Luke K, et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 2021, 8(3): 357-363.

    [28] [28] Wang Z, Chen G, Ruan Z, et al. Silicon–lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode[J]. ACS Photonics, 2022, 9(8): 2668-2675.

    [29] [29] Liu X, Xiong B, Sun C, et al. Wideband thin-film lithium niobate modulator with low half-wave-voltage length product[J]. Chinese Optics Letters, 2021, 19(6): 060016.

    [30] [30] Agrawal G P. Nonlinear Fiber Optics[M]. Berlin: Springer, 2007.

    [31] [31] Zhang Y, Shao L, Yang J, et al. Systematic investigation of millimeter-wave optic modulation performance in thin-film lithium niobate[J]. Photonics Research, 2022, 10(11): 2380-2387.

    [32] [32] Zhang Y, Wang X, Li Z, et al. Flat optical frequency comb generation based on monolithic integrated LNOI intensity and phase modulator[J]. Photonics, 2022, 9(7): 495.

    Tools

    Get Citation

    Copy Citation Text

    LIU Jiaxu, ZHOU Qiaoling, ZHOU Jingjie, ZHENG Shaonan, ZHAO Xingyan, QIU Yang, DONG Yuan, ZHONG Qize, HU Ting. Ultrashort Optical Pulse Generation Based on Thin-Film Lithium Niobate Electro-Optic Modulators with Slow-Wave Electrode[J]. Semiconductor Optoelectronics, 2025, 46(4): 608

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 16, 2025

    Accepted: Sep. 18, 2025

    Published Online: Sep. 18, 2025

    The Author Email:

    DOI:10.16818/j.issn1001-5868.20250617001

    Topics