Semiconductor Optoelectronics, Volume. 46, Issue 4, 608(2025)
Ultrashort Optical Pulse Generation Based on Thin-Film Lithium Niobate Electro-Optic Modulators with Slow-Wave Electrode
[1] [1] Lundberg L, Mazur M, Mirani A, et al. Phase-coherent lightwave communications with frequency combs[J]. Nature Communications, 2020, 11: 201.
[2] [2] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications[J]. Nature, 2017, 546(7657): 274-279.
[3] [3] Torres-Company V, Schrder J, Flp A, et al. Laser frequency combs for coherent optical communications[J]. Journal of Lightwave Technology, 2019, 37(7): 1663-1670.
[4] [4] Picqu N, Hnsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 2019, 13(3): 146-157.
[5] [5] Ideguchi T, Holzner S, Bernhardt B, et al. Coherent Raman spectro-imaging with laser frequency combs[J]. Nature, 2013, 502(7471): 355-358.
[6] [6] Udem T, Holzwarth R, Hnsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.
[7] [7] McMahon P L, Marandi A, Haribara Y, et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections[J]. Science, 2016, 354(6312): 614-617.
[8] [8] Newman Z L, Maurice V, Drake T, et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 2019, 6(5): 680-685.
[9] [9] Obrzud E, Lecomte S, Herr T. Temporal solitons in microresonators driven by optical pulses[J]. Nature Photonics, 2017, 11(9): 600-607.
[10] [10] Kim J, Song Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.
[11] [11] Van Gasse K, Uvin S, Moskalenko V, et al. Recent advances in the photonic integration of mode-locked laser diodes[J]. IEEE Photonics Technology Letters, 2019, 31(23): 1870-1873.
[12] [12] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nature Photonics, 2019, 13(3): 158-169.
[13] [13] Zhang X, Wang C, Cheng Z, et al. Advances in resonator-based Kerr frequency combs with high conversion efficiencies[J]. NPJ Nanophotonics, 2024, 1: 26.
[14] [14] Zhang Y, Tao C, Luo S, et al. Ultra-fast optical time-domain transformation techniques[J]. Nature Reviews Methods Primers, 2025, 5: 11.
[15] [15] Carlson D R, Hickstein D D, Zhang W, et al. Ultrafast electro-optic light with subcycle control[J]. Science, 2018, 361(6409): 1358-1363.
[16] [16] Wang X, Li Z, Chen J, et al. Integrated thin-film lithium niobate electro-optic frequency comb for picosecond optical pulse train generation[J]. Applied Physics Letters, 2024, 124(20): 201101.
[17] [17] Yu M, Barton III D, Cheng R, et al. Integrated femtosecond pulse generator on thin-film lithium niobate[J]. Nature, 2022, 612(7939): 252-258.
[18] [18] Zhang X, Zhang J, Yin K, et al. Sub-100 fs all-fiber broadband electro-optic optical frequency comb at 1.5 μm[J]. Optics Express, 2020, 28(23): 34761-34771.
[19] [19] Sekhar P, Fredrick C, Carlson D R, et al. 20 GHz fiber-integrated femtosecond pulse and supercontinuum generation with a resonant electro-optic frequency comb[J]. APL Photonics, 2023, 8(11): 116111.
[20] [20] Jang Y S, Park J, Jin J. Comb-mode resolved spectral domain interferometer enabled by a broadband electro-optic frequency comb[J]. Photonics Research, 2023, 11(1): 72-80.
[21] [21] Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics[J]. Laser & Photonics Reviews, 2014, 8(3): 368-393.
[22] [22] Chen G, Li N, Da Ng J, et al. Advances in lithium niobate photonics: development status and perspectives[J]. Advanced Photonics, 2022, 4(3): 034003.
[23] [23] Pan B, Liu H, Huang Y, et al. Perspective on lithium-niobate-on-insulator photonics utilizing the electro-optic and acousto-optic effects[J]. ACS Photonics, 2023, 10(7): 2078-2090.
[24] [24] Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536-1537.
[25] [25] Valdez F, Mere V, Wang X, et al. Integrated O- and C-band silicon-lithium niobate Mach-Zehnder modulators with 100 GHz bandwidth, low voltage, and low loss[J]. Optics Express, 2023, 31(4): 5273-5289.
[26] [26] Chen G, Chen K, Gan R, et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode[J]. APL Photonics, 2022, 7(2): 026103.
[27] [27] Kharel P, Reimer C, Luke K, et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 2021, 8(3): 357-363.
[28] [28] Wang Z, Chen G, Ruan Z, et al. Silicon–lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode[J]. ACS Photonics, 2022, 9(8): 2668-2675.
[29] [29] Liu X, Xiong B, Sun C, et al. Wideband thin-film lithium niobate modulator with low half-wave-voltage length product[J]. Chinese Optics Letters, 2021, 19(6): 060016.
[30] [30] Agrawal G P. Nonlinear Fiber Optics[M]. Berlin: Springer, 2007.
[31] [31] Zhang Y, Shao L, Yang J, et al. Systematic investigation of millimeter-wave optic modulation performance in thin-film lithium niobate[J]. Photonics Research, 2022, 10(11): 2380-2387.
[32] [32] Zhang Y, Wang X, Li Z, et al. Flat optical frequency comb generation based on monolithic integrated LNOI intensity and phase modulator[J]. Photonics, 2022, 9(7): 495.
Get Citation
Copy Citation Text
LIU Jiaxu, ZHOU Qiaoling, ZHOU Jingjie, ZHENG Shaonan, ZHAO Xingyan, QIU Yang, DONG Yuan, ZHONG Qize, HU Ting. Ultrashort Optical Pulse Generation Based on Thin-Film Lithium Niobate Electro-Optic Modulators with Slow-Wave Electrode[J]. Semiconductor Optoelectronics, 2025, 46(4): 608
Category:
Received: Jun. 16, 2025
Accepted: Sep. 18, 2025
Published Online: Sep. 18, 2025
The Author Email: