Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 910(2025)
Research Progress on Thermometry Based on Rare Earth Luminescence Intensity
[1] [1] PUGLISI A, SARRACINO A, VULPIANI A. Temperature in and out of equilibrium: A review of concepts, tools and attempts[J]. Phys Rep, 2017, 709–710: 1–60.
[2] [2] LIU W J, YANG B Z. Thermography techniques for integrated circuits and semiconductor devices[J]. Sens Rev, 2007, 27(4): 298–309.
[3] [3] ANSARI A A, PARCHUR A K, NAZEERUDDIN M K, et al. Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices[J]. Coord Chem Rev, 2021, 444: 214040.
[4] [4] CHEN P, ILTON E S, WANG Z M, et al. Global rare earth element resources: A concise review[J]. Appl Geochem, 2024, 175: 106158.
[5] [5] CHEN Z Y, ZHU H, QIAN J J, et al. Rare earth ion doped luminescent materials: A review of up/down conversion luminescent mechanism, synthesis, and anti-counterfeiting application[J]. Photonics, 2013, 1(2): 123-145.
[6] [6] CRAWFORD S E, OHODNICKI P R, BALTRUS J P. Materials for the photoluminescent sensing of rare earth elements: Challenges and opportunities[J]. J Mater Chem C, 2020, 8(24): 7975–8006.
[7] [7] JAQUE D, VETRONE F. Luminescence nanothermometry[J]. Nanoscale, 2012, 4(15): 4301–4326.
[8] [8] SAKAKIBARA J, ADRIAN R J. Whole field measurement of temperature in water using two-color laser induced fluorescence[J]. Exp Fluids, 1999, 26(1): 7–15.
[9] [9] ZHAO Y, WANG X S, ZHANG Y, et al. Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress[J]. J Alloys Compd, 2020, 817: 152691.
[10] [10] WANG C L, JIN Y H, ZHANG R T, et al. A review and outlook of ratiometric optical thermometer based on thermally coupled levels and non-thermally coupled levels[J]. J Alloys Compd, 2022, 894: 162494.
[11] [11] COLLINS S F, BAXTER G W, WADE S A, et al. Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation[J]. 1998, 84(9): 4649–4654.
[12] [12] LI L P, ZHANG Z X, ZHANG J Y, et al. Effective strategy for properly evaluating the relative sensitivity of luminescence thermometry[J]. Opt Express, 2024, 32(13): 22714–22721.
[13] [13] KUSAMA H, SOVERS O J, YOSHIOKA T. Line shift method for phosphor temperature measurements[J]. Jpn J Appl Phys, 1976, 15(12): 2349–2358.
[14] [14] BERTHOU H, JRGENSEN C K. Optical-fiber temperature sensor based on upconversion-excited fluorescence[J]. Opt Lett, 1990, 15(19): 1100–1102.
[15] [15] WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. 2003, 94(8): 4743–4756.
[16] [16] SUO H, ZHAO X Q, ZHANG Z Y, et al. Constructing multiform morphologies of YF: Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry[J]. Chem Eng J, 2017, 313: 65–73.
[17] [17] NIKOLI M G, JOVANOVI D J, OREVI V, et al. Thermographic properties of Sm3+-doped GdVO4 phosphor[J]. Phys Scr, 2012, T149: 014063.
[18] [18] LPEZ-ESQUIVEL R I, GARDUO-WILCHES I A, GUZMN- OLGUN J C, et al. Thermally coupled energy levels of Eu3+ with in the BaHfO3 matrix, excited with UV radiation[J]. Appl Radiat Isot, 2022, 186: 110266.
[19] [19] WU Y F, SUO H, HE D, et al. Highly sensitive up-conversion optical thermometry based on Yb3+-Er3+ co-doped NaLa(MoO4)2 green phosphors[J]. Mater Res Bull, 2018, 106: 14–18.
[20] [20] SINGH A K. Ho3+: TeO2 glass, a probe for temperature measurements[J]. Sens Actuat A Phys, 2007, 136(1): 173–177.
[21] [21] XING L L, AO R, LIU Y S, et al. Optical thermometry based on the non-thermally coupled levels of Tm(III) in LiNbO3 crystals[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 222: 117159.
[22] [22] XU W, ZHAO H, ZHANG Z G, et al. Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic[J]. Sens Actuat B Chem, 2013, 178: 520–524.
[23] [23] LONG S C, TIAN M F, ZHANG D, et al. Achieving high sensing sensitivity in a Dy3+ doped garnet phosphor toward optical thermometry[J]. J Mater Chem C, 2024, 12(48): 19536–19544.
[24] [24] ZHANG H, GAO Z Y, LI G G, et al. A ratiometric optical thermometer with multi-color emission and high sensitivity based on double perovskite LaMg0.402Nb0.598O3: Pr3+ thermochromic phosphors[J]. Chem Eng J, 2020, 380: 122491.
[25] [25] VETRONE F, NACCACHE R, ZAMARRN A, et al. Temperature sensing using fluorescent nanothermometers[J]. ACS Nano, 2010, 4(6): 3254–3258.
[26] [26] JIANG S, ZENG P, LIAO L Q, et al. Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4: Yb3+/Er3+ nanocrystals[J]. J Alloys Compd, 2014, 617: 538–541.
[27] [27] CAO J K, LI X M, WANG Z X, et al. Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6: Er3+ glass ceramics[J]. Sens Actuat B Chem, 2016, 224: 507–513.
[28] [28] DONG B, LIU D P, WANG X J, et al. Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3[J]. 2007, 90(18): 181117.
[29] [29] XU W, ZHAO H, LI Y X, et al. Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4[J]. Sens Actuat B Chem, 2013, 188: 1096–1100.
[30] [30] ZHANG J, LI X W, CHEN G B. Upconversion luminescence of Ba9Y2Si6O24: Yb3+-Ln3+ (Ln = Er, Ho, and Tm) phosphors for temperature sensing[J]. Mater Chem Phys, 2018, 206: 40–47.
[31] [31] XIANG G T, XIA Q, LIU X T, et al. Optical thermometry based on the thermally coupled energy levels of Er3+ in upconversion materials[J]. Dalton Trans, 2020, 49(47): 17115–17120.
[32] [32] TIAN X Y, WANG C C, WEN J, et al. High temperature sensitivity phosphor based on an old material: Red emitting H3BO3 flux assisted CaTiO3: Pr3+[J]. J Lumin, 2019, 214: 116528.
[33] [33] BOLEK P, VAN SWIETEN T, ZELER J, et al. Luminescence thermometry of Pr3+-doped Sr3Y2Ge3O12 and Sr3Sc2Ge3O12 submicron garnets spanning the 13–1025 K range and new insight to their spectroscopy[J]. Chem Mater, 2024: acs.chemmater.4c01743.
[34] [34] LIANG Z, QIN F, ZHENG Y D, et al. Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal[J]. Sens Actuat A Phys, 2016, 238: 215–219.
[35] [35] IRI A, PERIA J, ZEKOVI I, et al. Multilevel-cascade intensity ratio temperature read-out of Dy3+ luminescence thermometers[J]. J Lumin, 2022, 245: 118795.
[36] [36] ZHU K S, ZHOU H L, QIU J R, et al. Optical temperature sensing characteristics of Sm3+ doped YAG single crystal fiber based on luminescence emission[J]. J Alloys Compd, 2022, 890: 161844.
[37] [37] XIAO Q, ZHOU N, LI W J, et al. Host dependent upconversion of Ho3+ activated system for extended luminescence color tunability and highly-sensitive optical thermometry[J]. Ceram Int, 2025, 51(2): 2589–2596.
[38] [38] NAIR G B, TAMBOLI S, KROON R E, et al. Microwave-assisted hydrothermal synthesis of LaOF: Yb3+, Ho3+ nanorods with high thermoresponsive upconversion luminescence for thermometry[J]. Mater Today Chem, 2023, 29: 101463.
[39] [39] ZHENG H X, ZHOU X J, LI S Y, et al. Research on the luminescent and thermometric properties of MgMoO4: Er3+[J]. Mater Res Bull, 2024, 179: 112944.
[40] [40] MACIEL G S, RAKOV N. Thermometric analysis of the near-infrared emission of Nd3+ in Y2SiO5 ceramic powder prepared by combustion synthesis[J]. Ceram Int, 2020, 46(8): 12165–12171.
[41] [41] KOLESNIKOV I E, AFANASEVA E V, KUROCHKIN M A, et al. Upconverting NIR-to-NIR LuVO4: Nd3+/Yb3+ nanophosphors for high-sensitivity optical thermometry[J]. ACS Appl Mater Interfaces, 2022, 14(1): 1757–1764.
[42] [42] DING Y C, SO B, CAO J K, et al. Light delivery, acoustic read-out, and optical thermometry using ultrasound-induced mechanoluminescence and the near-infrared persistent luminescence of CaZnOS: Nd3+[J]. Adv Optical Mater, 2023, 11(17): 2300331.
[43] [43] CHEN A F, GONG H L, WEI R F, et al. Highly sensitive optical thermometry based on Tm3+/Yb3+ doped NaGd2F7 glass ceramics[J]. J Alloys Compd, 2022, 921: 166094.
[44] [44] HU F F, CHEN W P, JIANG Y C, et al. Tm3+-doped Na0.5-xYb0.5+xF2+2x self-crystallization glass ceramics: Microstructure and optical thermometry properties[J]. J Lumin, 2019, 214: 116558.
[45] [45] LEI L, CHEN D Q, HUANG F, et al. Sensitivity modification of upconversion thermometry through manipulating cross-relaxation between Tm3+ ions[J]. J Alloys Compd, 2018, 747: 960–965.
[46] [46] LI L P, ZHOU Y, QIN F, et al. Eu3+-based luminescence ratiometric thermometry[J]. RSC Adv, 2020, 10(16): 9444–9449.
[47] [47] NIKOLIC M G, RABASOVIC M S, KRIZAN J, et al. Luminescence thermometry using Gd2Zr2O7:Eu3+[J]. Opt Quantum Electron, 2018, 50(6): 258.
[48] [48] GAVRILOVI T, OREVI V, PERIA J, et al. Luminescence thermometry with Eu3+-doped Y2Mo3O12: Comparison of performance of intensity ratio and machine learning temperature read-outs[J]. Materials, 2024, 17(21): 5354.
[49] [49] TIAN X Y, LI J L, SHENG H Y, et al. Luminescence and optical thermometry based on silico-carnotite Ca3Y2Si3O12: Pr3+ phosphor[J]. Ceram Int, 2022, 48(3): 3860–3868.
[50] [50] ALY TALEB Z E A, SAIDI K, DAMMAK M. Dual-mode optical ratiometric thermometry using Pr3+-doped NaSrGd(MoO4)3 phosphors with tunable sensitivity[J]. Dalton Trans, 2023, 52(47): 18069–18081.
[51] [51] ZHENG J J, SHEN H L, LI Y F, et al. Down-conversion luminescence and thermometric properties of novel orange-red Bi2Mo3O12: Pr3+ phosphors[J]. Opt Mater, 2024, 157: 116326.
[52] [52] ZHENG J J, SHEN H L, LI Y F, et al. Structural and luminescent performance and optical thermometry of Pr3+ doped SrWO4 down-conversion phosphors[J]. J Alloys Compd, 2023, 968: 172112.
[53] [53] SINGH R, MANHAS M, BEDYAL A K, et al. Impact of ligand environment on optical, luminescence and thermometric behavior of A3(PO4)2: Sm3+ (A = Ca, Sr) phosphors[J]. Luminescence, 2024, 39(2): e4665.
[54] [54] TIAN X Y, GUO L J, WEN J, et al. Anti-thermal quenching behavior of Sm3+ doped SrMoO4 phosphor for new application in temperature sensing[J]. J Alloys Compd, 2023, 959: 170574.
[55] [55] ABBAS M T, KHAN S A, MAO J S, et al. Optical thermometry based on the luminescence intensity ratio of Dy3+-doped GdPO4 phosphors[J]. J Therm Anal Calorim, 2022, 147(21): 11769–11775.
[56] [56] LI P P, JIA M C, LIU G F, et al. Investigation on the fluorescence intensity ratio sensing thermometry based on nonthermally coupled levels[J]. ACS Appl Bio Mater, 2019, 2(4): 1732–1739.
[57] [57] HUANG H, TUXUN H, ZHONG K, et al. Enabling Nonthermally coupled upconversion in a core–shell–shell nanoparticle for ultrasensitive nanothermometry and anticounterfeiting[J]. ACS Appli Nano Mater, 2024, 7(7): 7794-7801.
[58] [58] ZHANG L X, MENG Q Y, SUN W J, et al. Temperature-sensing characteristics of NaGd(MoO4)2: Sm3+, Tb3+ phosphors[J]. Ceram Int, 2021, 47(1): 670–676.
[59] [59] ZHONG L, JIANG S, WANG X H, et al. Ultra-sensitive luminescence thermometry based on MgNb2O6: Dy3+/Pr3+ thermochromic phosphors[J]. Inorg Chem Front, 2022, 9(22): 5757–5765.
[60] [60] ZHANG M Z, LIN L, FENG Z H, et al. Color-tunable hypersensitive temperature sensor based on metal organic framework doped with Eu3+ and Dy3+viaphonon-assisted energy transfer[J]. J Rare Earths, 2023, 41(11): 1662–1669.
[61] [61] XING J H, GAO Z X, LUO Y, et al. Eu3+/Tb3+ Co-doped transparent fluorophosphate glass ceramics for optical thermometry[J]. Opt Mater, 2023, 135: 113313.
[62] [62] KOLESNIKOV I E, MAMONOVA D V, KUROCHKIN M A, et al. Effect of calcination temperature on thermometric performances of ratiometric co-doped Gd2O3: Tb3+, Eu3+ nanothermometers[J]. Ceram Int, 2023, 49(4): 6899–6905.
[63] [63] ZHU Y, MENG Q Y, SUN W J, et al. Sm3+, Tb3+ Co-doped NaLa(MoO4)2 temperature sensing materials based on the fluorescence intensity ratio[J]. J Alloys Compd, 2019, 784: 456–462.
[64] [64] SU K, GUO Q F, SHUAI P F, et al. High thermal stability pyroxene type CaScAlSiO6: Tb3+/Sm3+ ceramics with excellent cryogenic optical thermometry performance[J]. Ceram Int, 2022, 48(4): 4675–4685.
[65] [65] YAN Y B, DING S S, ZHANG B X, et al. Dy3+/Pr3+ Co-doped YVO4 white phosphor: Luminescence properties and highly sensitive optical thermometry[J]. Opt Mater, 2024, 150: 115192.
[66] [66] REN K K, WEI D, CAI X Y, et al. Highly sensitive temperature sensing of Na(Y1.5Na0.5)F6 glass-ceramics based on Dy3+/Pr3+ energy transfer[J]. J Mater Chem C, 2024, 12(46): 18905–18916.
[67] [67] ZHONG L, JIANG S, WANG X H, et al. Dual-mode optical thermometry based on intervalence charge transfer excitations in Tb3+/Pr3+ co-doped CaNb2O6 phosphors[J]. Ceram Int, 2022, 48(20): 30005–30011.
[68] [68] ZHANG H, YANG H, LI G G, et al. Enhancing thermometric performanceviaimproving indicator signal in Bi3+-doped CaNb2O6: Ln3+ (Ln = Eu/Sm/Dy/Tb) phosphors[J]. Chem Eng J, 2020, 396: 125251.
[69] [69] CUI M, WANG J D, LI J H, et al. An abnormal yellow emission and temperature-sensitive properties for perovskite-type Ca2MgWO6 phosphorviacation substitution and energy transfer[J]. J Lumin, 2019, 214: 116588.
[70] [70] TREJGIS K, DRAMIANIN M D, MARCINIAK L. Highly sensitive multiparametric luminescent thermometer for biologically-relevant temperatures based on Mn4+, Ln3+ co-doped SrTiO3 nanocrystals[J]. J Alloys Compd, 2021, 875: 159973.
[71] [71] BRITES C D S, MARIN R, SUTA M, et al. Spotlight on luminescence thermometry: Basics, challenges, and cutting-edge applications[J]. Adv Mater, 2023, 35(36): e2302749.
[72] [72] NEXHA A, CARVAJAL J J, PUJOL M C, et al. Lanthanide doped luminescence nanothermometers in the biological windows: Strategies and applications[J]. Nanoscale, 2021, 13(17): 7913–7987.
[73] [73] LIU M, LIANG J Y, VETRONE F. Toward accurate photoluminescence nanothermometry using rare-earth doped nanoparticles for biomedical applications[J]. Acc Chem Res, 2024, 57(18): 2653–2664.
[74] [74] GUO Y, QIN L J, XU J, et al. Stark splitting of intense red emission for Er3+ in Oh symmetry sites realizing optical temperature sensing in biological applications[J]. Rare Met, 2024, 43(3): 1263–1274.
[75] [75] CLARKE D R, PHILLPOT S R. Thermal barrier coating materials[J]. Mater Today, 2005, 8(6): 22–29.
[76] [76] FOULIARD Q, HALDAR S, GHOSH R, et al. Modeling luminescence behavior for phosphor thermometry applied to doped thermal barrier coating configurations[J]. Appl Opt, 2019, 58(13): D68–D75.
[77] [77] LIU J Y, QUAN Y K, XU G Q, et al. An online multi-spectrum-based method for evaluating thermal insulation performance of smart thermal barrier coatings[J]. Cell Rep Phys Sci, 2024, 5(5): 101958.
Get Citation
Copy Citation Text
ZHONG Gang, ZHANG Zhiqi, ZHENG Jiaochun, LI Shuxing, XIE Rongjun. Research Progress on Thermometry Based on Rare Earth Luminescence Intensity[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 910
Special Issue:
Received: Dec. 11, 2024
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: LI Shuxing (lishuxing@xmu.edu.cn)