Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0415002(2025)

Adaptive Multimodal-Feature Fusion for 6D Object Position Estimation

Chuanfang Zang1,2、*, Jianwu Dang1,2, and Jiu Yong1,2
Author Affiliations
  • 1School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu , China
  • 2National Virtual Simulation Experimental Teaching Center of Rail Transit Information and Control, Lanzhou 730070, Gansu , China
  • show less
    Figures & Tables(9)
    Overview of pose estimation
    Point cloud feature extraction
    Flowchart for obtaining surface normal
    Feature fusion module
    Comparison of pose estimation results. (a) ape; (b) eggbox; (c) cat; (d) camera
    Experimental results of surface normal generation from depth information. (a) Original image; (b) normal image; (c) normal image of the target object
    • Table 1. Test results on LineMOD dataset

      View table

      Table 1. Test results on LineMOD dataset

      ObjectRGB based methodRGB-D based method
      PoseCNNPVNetHybridPoseTexPoseDenseFusionMaskedFusionUni6DQaQProposed method
      mean88.686.394.591.794.397.397.095.397.4
      ape77.043.677.680.992.392.293.790.396.1
      bench yi.97.599.999.699.093.298.499.894.397.6
      camera93.586.995.994.894.498.096.096.897.3
      can96.595.593.699.793.197.499.095.696.9
      cat82.179.393.592.696.597.898.195.897.7
      driller95.096.497.297.487.095.699.190.094.5
      duck77.752.687.083.492.394.099.092.195.8
      eggbox97.199.299.694.999.899.6100.0100.099.8
      glue99.495.798.793.4100.0100.099.2100.099.9
      hole p.52.882.092.579.392.197.390.292.896.5
      iron98.398.998.199.897.097.199.598.199.0
      lamp97.599.396.998.395.399.099.496.997.8
      phone87.792.498.378.992.898.897.496.597.4
    • Table 2. Test results on YCB-Video dataset

      View table

      Table 2. Test results on YCB-Video dataset

      ObjectDenseFusionDual-StreamPR-GCNUni6DProposed method
      AUC<2 cm /%AUC<2 cm /%AUC<2 cm /%AUC<2 cm /%AUC<2 cm /%
      mean91.696.292.296.595.097.794.597.595.898.3
      master chef can96.0100.093.399.895.699.494.898.796.3100.0
      cracker box93.199.296.099.497.0100.091.398.497.3100.0
      sugar box96.899.697.499.997.898.195.999.198.199.8
      tomato soup can93.395.793.796.594.697.294.196.495.897.4
      mustard bottle97.099.896.1100.098.099.695.299.098.6100.0
      tuna fish can95.9100.095.899.596.499.894.798.897.2100.0
      pudding box94.899.496.299.797.899.294.399.297.999.8
      gelatin box98.0100.095.695.296.495.397.199.898.2100.0
      potted meat can88.792.189.391.495.197.992.894.095.494.9
      banana94.398.996.9100.097.199.996.099.498.0100.0
      pitcher base96.999.396.398.997.6100.096.399.598.3100.0
      bleach cleanser94.298.994.099.996.399.194.797.696.899.6
      bowl85.197.685.199.390.596.894.396.994.1100.0
      mug97.299.997.198.597.599.396.599.797.999.8
      power drill94.097.294.598.197.099.093.895.397.498.5
      wood block87.893.090.997.794.897.794.497.295.397.9
      scissors93.798.793.899.094.998.586.984.694.2100.0
      large marker97.2100.096.899.896.899.496.499.897.0100.0
      large clamp71.678.172.077.287.292.694.198.388.790.1
      extra large clamp66.074.773.276.979.183.393.997.583.487.4
      foam brick92.297.591.898.996.098.996.099.296.5100.0
    • Table 3. Comparative analysis of model ablation experiments

      View table

      Table 3. Comparative analysis of model ablation experiments

      RGB-DImprove feature extractionNormal enhancement moduleFeature fusion moduleBaseline modelADD /%
      88.8
      93.4
      95.9
      97.4
    Tools

    Get Citation

    Copy Citation Text

    Chuanfang Zang, Jianwu Dang, Jiu Yong. Adaptive Multimodal-Feature Fusion for 6D Object Position Estimation[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0415002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: May. 8, 2024

    Accepted: Jun. 17, 2024

    Published Online: Feb. 10, 2025

    The Author Email:

    DOI:10.3788/LOP241238

    CSTR:32186.14.LOP241238

    Topics