Laser & Optoelectronics Progress, Volume. 57, Issue 14, 141030(2020)

Magnetic Resonance Brain Tumor Image Segmentation Based on Attention U-Net

Lingmei Ai1、*, Tiandong Li1、**, Fuyuan Liao2, and Kangzhen Shi1
Author Affiliations
  • 1School of Computer Science, Shaanxi Normal University, Xi'an, Shaanxi 716000, China
  • 2School of Electronic Information Engineering, Xi'an Technological University, Xi'an, Shaanxi 716000, China
  • show less
    Figures & Tables(9)
    Network structure. (a) FCN; (b) U-Net; (c) Res-U-Net; (d) proposed method
    Convolution module of the network structure. (a) Residure modules; (b) dense module; (c) residure-dense module
    Aattention module of SE-Net. (a) SE-Net attention unit; (b) proposed attention unit
    Experimental data. (a) TI image; (b) T1ce image; (c) T2 image; (d) FLAIR image; (E) ground truth
    Experimental results of the four models at three different levels of LGG and HGG. (a) LGG; (b) HGG
    Comparison of network loss changes under different epoch weighting factors
    • Table 1. Results of the four models%

      View table

      Table 1. Results of the four models%

      ModelDice scoreSensitivitySpecificity
      WTTCETWTTCETWTTCET
      FCN83.1673.3463.1388.7577.2571.3699.8399.8299.95
      U-Net84.1675.2365.1389.1578.1573.2699.7499.8099.94
      Res-U-Net87.1074.9778.3289.8579.3277.4299.9699.9399.97
      Proposed90.5679.8278.6190.2580.2978.9599.9899.9599.98
    • Table 2. Results of adding different blocks to the U-NET structure%

      View table

      Table 2. Results of adding different blocks to the U-NET structure%

      ModelDice scoreSensitivitySpecificity
      WTTCETWTTCETWTTCET
      U-Net84.1675.2365.1389.1578.1573.2699.7499.8099.94
      RDB+U-Net87.2576.2077.2387.5379.4277.0299.8598.9099.13
      TRB+RDB+U-Net87.3875.9777.4289.5278.5877.4598.8698.9299.21
      A1+TRB+RDB+U-Net89.0578.5378.4689.9779.9278.5199.3299.9199.42
      A2+TRB+RDB+U-Net88.8277.2578.3589.5179.3678.0199.0699.8899.35
      A3+TRB+RDB+U-Net88.2376.8277.3288.9778.8677.8199.8599.8199.29
      Proposed90.5679.8278.6190.2580.2978.9599.9899.9599.98
    • Table 3. Dice comparison between proposed method and other advanced segmentation methods

      View table

      Table 3. Dice comparison between proposed method and other advanced segmentation methods

      MethodDice_WTDice_ETDice_TC
      Dong et al.[7]0.86000.65000.8600
      Isensee et al.[21]0.85800.64700.7750
      Puch et al.[22]0.89700.75200.7970
      Proposed0.90560.78610.7982
    Tools

    Get Citation

    Copy Citation Text

    Lingmei Ai, Tiandong Li, Fuyuan Liao, Kangzhen Shi. Magnetic Resonance Brain Tumor Image Segmentation Based on Attention U-Net[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141030

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 6, 2019

    Accepted: Dec. 31, 2019

    Published Online: Jul. 28, 2020

    The Author Email: Lingmei Ai (almsac@163.com), Tiandong Li (litiandong@snnu.edu.cn)

    DOI:10.3788/LOP57.141030

    Topics