Laser & Optoelectronics Progress, Volume. 57, Issue 14, 141030(2020)
Magnetic Resonance Brain Tumor Image Segmentation Based on Attention U-Net
Fig. 1. Network structure. (a) FCN; (b) U-Net; (c) Res-U-Net; (d) proposed method
Fig. 2. Convolution module of the network structure. (a) Residure modules; (b) dense module; (c) residure-dense module
Fig. 3. Aattention module of SE-Net. (a) SE-Net attention unit; (b) proposed attention unit
Fig. 4. Experimental data. (a) TI image; (b) T1ce image; (c) T2 image; (d) FLAIR image; (E) ground truth
Fig. 5. Experimental results of the four models at three different levels of LGG and HGG. (a) LGG; (b) HGG
Fig. 6. Comparison of network loss changes under different epoch weighting factors
|
|
|
Get Citation
Copy Citation Text
Lingmei Ai, Tiandong Li, Fuyuan Liao, Kangzhen Shi. Magnetic Resonance Brain Tumor Image Segmentation Based on Attention U-Net[J]. Laser & Optoelectronics Progress, 2020, 57(14): 141030
Category: Image Processing
Received: Nov. 6, 2019
Accepted: Dec. 31, 2019
Published Online: Jul. 28, 2020
The Author Email: Lingmei Ai (almsac@163.com), Tiandong Li (litiandong@snnu.edu.cn)