Chinese Journal of Lasers, Volume. 50, Issue 22, 2204001(2023)
Research on New Co-phasing Detection Method of Segmented Mirror Based on Deep Learning
[1] Jerry E N, Peter R G. Overview of the performance of the W.M. Keck observatory[J]. Proceedings of SPIE, 2199, 82-93(1994).
[2] Li S S, Fan D W, Cui C Z et al. Review of LAMOST open data access and future prospect[J]. China Science & Technology Resources Review, 54(2022).
[3] Janson M, Henning T, Quanz S P et al. Occulter to earth: prospects for studying earth-like planets with the E-ELT and a space-based occulter[J]. Experimental Astronomy, 1-14(2021).
[5] Su D Q, Cui X Q. Active optics: key technology of the new generation telescopes[J]. Progress in Astronomy, 17, 1-14(1999).
[6] Chanan G, Troy M, Dekens F et al. Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm[J]. Applied Optics, 37, 140-155(1998).
[7] Chanan G, Ohara C, Troy M. Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm[J]. Applied Optics, 39, 4706-4714(2000).
[8] Zheng B, Lu P F, Chen Y H et al. Co-phase error detection of segmented mirrors[J]. Acta Optica Sinica, 37, 1112002(2017).
[9] Huang L S, Wang J L, Chen L et al. Visible pyramid wavefront sensing approach for daylight adaptive optics[J]. Optics Express, 30, 10833-10849(2022).
[10] Ma F S, Xian H, Wang S Q. Detection method of piston error of synthetic aperture system by pyramid sensor[J]. Laser & Optoelectronics Progress, 60, 1528001(2023).
[11] An Q C, Wu X X, Lin X D et al. Large segmented sparse aperture collimation by curvature sensing[J]. Optics Express, 28, 40176-40187(2020).
[12] Hedglen A D, Close L M, Haffert S Y et al. Lab tests of segment/petal phasing with a pyramid wavefront sensor and a holographic dispersed fringe sensor in turbulence with the Giant Magellan Telescope high contrast adaptive optics phasing testbed[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 8, 021515(2022).
[13] Meng Y H, Xu S Y, Xu B Q. Method of segmented mirror co-phasing based on dispersed fringe sensing technology[J]. Acta Optica Sinica, 36, 0911006(2016).
[14] Robert A G, Robert C. Wavefront sensing by phase retrieval[J]. Proceedings of SPIE, 0207, 32-39(1979).
[15] Zhang L, Zhao H, Yi H W et al. Modified phase diversity technique to eliminate Poisson noise for reconstructing high-resolution images[J]. Proceedings of SPIE, 10838, 108380R(2019).
[16] Kong F Q, Zhou Y B, Shen Q et al. End-to-end multispectral image compression using convolutional neural network[J]. Chinese Journal of Lasers, 46, 1009001(2019).
[17] Sun Z, Wang S Y. Application of deep learning in intravascular optical coherence tomography[J]. Laser & Optoelectronics Progress, 59, 2200002(2022).
[18] Yuan K, Huo L. Multiple-scale inpainting convolutional neural network for retinal OCT image segmentation[J]. Chinese Journal of Lasers, 48, 1507004(2021).
[19] Liu J X, Ban W, Chen Y et al. Multi-dimensional CNN fused algorithm for hyperspectral remote sensing image classification[J]. Chinese Journal of Lasers, 48, 1610003(2021).
[20] Angel J R P, Wizinowich P, Lloyd-Hart M et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 348, 221-224(1990).
[21] Nishizaki Y, Valdivia M, Horisaki R et al. Deep learning wavefront sensing[J]. Optics Express, 27, 240-251(2019).
[22] Li D Q, Xu S Y, Wang D et al. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 44, 1170-1173(2019).
[23] Ma X F, Xie Z L, Ma H T et al. Piston sensing of sparse aperture systems with a single broadband image via deep learning[J]. Optics Express, 27, 16058-16070(2019).
[24] Ma X F, Xie Z L, Ma H T et al. Piston sensing for sparse aperture systems with broadband extended objects via a single convolutional neural network[J]. Optics and Lasers in Engineering, 128, 106005(2020).
[25] Wang Y R, Jiang F Y, Ju G H et al. Deep learning wavefront sensing for fine phasing of segmented mirrors[J]. Optics Express, 29, 25960-25978(2021).
[26] Li B, Wu J, Liu Y D et al. Co-phasing experiment of active optics for segmented mirror[J]. Acta Photonica Sinica, 47, 0212003(2018).
[27] Li B, Liu Y D, Xie F Y. Coarse co-phasing detection of segmented mirrors[J]. Optics and Precision Engineering, 26, 2647-2653(2018).
[28] Lofdahl M G, Eriksson H. Algorithm for resolving 2π ambiguities in interferometric measurements by use of multiple wavelengths[J]. Optical Engineering, 40, 984-990(2001).
[29] Li B, Yu W H, Tang J L et al. Theory and experiment of phasing detection by use of two wavelengths[J]. Applied Optics, 56, 1-7(2016).
[30] Howard A, Sandler M, Chen B et al. Searching for MobileNetV3[C], 1314-1324(2020).
[31] Sandler M, Howard A, Zhu M L et al. MobileNetV2: inverted residuals and linear bottlenecks[C], 4510-4520(2018).
Get Citation
Copy Citation Text
Bin Li, Akun Yang, Zhaoxiang Sun, Nan Chen. Research on New Co-phasing Detection Method of Segmented Mirror Based on Deep Learning[J]. Chinese Journal of Lasers, 2023, 50(22): 2204001
Category: Measurement and metrology
Received: Oct. 24, 2022
Accepted: Jan. 9, 2023
Published Online: Nov. 7, 2023
The Author Email: Li Bin (libingioe@126.com)