Laser & Optoelectronics Progress, Volume. 61, Issue 11, 1116004(2024)

Thin Film Lithium Niobate On-Chip Integration of Multi-Dimensional Multiplexed Photonic Devices (Invited)

Yonghui Tian*, Mingrui Yuan, Shijing Qin, Hao Li, Sixuan Wang, and Huifu Xiao
Author Affiliations
  • School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
  • show less
    Figures & Tables(18)
    Preparation method of LNOI waveguide. (a) Preparation step of directly etching LN to form a ridge waveguide; (b) preparation step of depositing optical load material on top of LN to form a ridge waveguide
    Thin film lithium niobate wavelength division multiplexers. (a) AWG structure[88]; (b) MMI structure[93]; (c) MWG structure[96]; (d) SWG structure[97]
    Thin film lithium niobate mode division multiplexers. (a) PhotonicvBIC structure in the polymer-loaded LNOI platform[112]; (b) MZI structure in the direct etching LN platform[113]; (c) asymmetric directional coupling structure in the silicon rich nitride-loaded LNOI platform[110]; (d) asymmetric directional coupling structure in the silicon nitride-loaded LNOI platform[54]; (e) adiabatic asymmetric coupling structure in the direct etching LN platform[114]
    Thin film lithium niobate power splitters. (a) Metasurface structure[115]; (b) Y-branch structure[116]; (c) inverse design structure[117]; (d) MMI structure[118]; (e) adiabatic mode evolution structure[119]; (f) SWG-assisted Y-branch structure[120]
    Thin film lithium niobate waveguide crossings and bendings. (a) Inverse-designed structure[121]; (b) MMI structure[122]; (c) double-slot etching structure[123]; (d) modified Euler bend structure[102]
    Thin film lithium niobate polarizers. (a) TM-pass polarizer based on long-period grating structure[126]; (b) TM-pass polarizer based on hybrid plasmonic grating structure[127]; (c) TE-pass polarizer based on hybrid plasmonic grating structure[128]; (d) TM-pass polarizer based on air-slot assisted waveguide structure[129]; (e) TM-pass polarizer based on SWG structure[130]; (f) TM-pass polarizer based on SWG metamaterial structure[131]
    Thin film lithium niobate polarization beam splitters. (a) MZI structure[133]; (b) stimulated Raman adiabatic passage structure[134]; (c) hybrid plasmonic structure[135]; (d) hetero-anisotropic metamaterial structure[136]; (e) photonic-crystal-assisted MMI structure[140]; (f) thermo-optic MZI structure[141]
    Thin film lithium niobate polarization rotators.(a) Asymmetric inclined waveguide structure[142]; (b) asymmetric hybrid plasmonic waveguide structure[143]; (c) asymmetric tapered waveguide structure[144]; (d) asymmetric optical phase change material structure[145]
    Thin film lithium niobate polarization rotator-splitters. (a) Two-stage adiabatic mode evolution structure[146]; (b) asymmetric directional coupler structure[54]; (c) combined structure consisting of an adiabatic taper, an asymmetric directional coupler, and a MMI mode splitter[147]; (d) adiabatic mode evolution structure[149]; (e) multi-taper structure[150]; (f) fully adiabatic structure[151]; (g) asymmetric Y-branch structure[152]; (h) combined structure consisting of an adiabatic taper, a Y-branch, and a MMI mode splitter[153]
    • Table 1. Wavelength division multiplexers in thin film lithium niobate platform

      View table

      Table 1. Wavelength division multiplexers in thin film lithium niobate platform

      Ref.StructureWavelength channelChannel spacing /nmInsertion loss /dBCrosstalk /dB
      88MMI+AWG84.0<25.0<-10.0
      90AWG43.2<27.2<-7.5
      91AWG8/169.6/3.7<6.6/8.4<-19.3/-18.3
      92AWG40.82.3-20.0
      86AMMI+4 MZI4<0.9~18.2
      93MMI420.0<0.7<-18.0
      534 F-P cavities+ WDM filter47.0~0.8<-22.0
      94Bragg grating420.0<1.0<-18.0
      96MWG3<0.2~30.0
      97Subwavelength grating33.2~2.5<-20.0
    • Table 2. Mode multiplexers in thin film lithium niobate platform

      View table

      Table 2. Mode multiplexers in thin film lithium niobate platform

      Ref.StructureModeInsertion loss /dBCrosstalk /dBBandwidth /nm
      SimulatedExperimentalSimulatedExperimentalSimulatedExperimental
      112ADC4~0.6~1.5-13.0-13.05050
      113MZI2<-20.0<-16.93030
      110Adiabatic DC40.21.6-16.0100
      54ADC40.52.8-13.0-11.07070
      114Adiabatic DC4~0.1~0.2-23.0-20.0200>80
    • Table 3. Optical power splitters in thin film lithium niobate platform

      View table

      Table 3. Optical power splitters in thin film lithium niobate platform

      Ref.StructureInsertion loss /dBBandwidth /nmLength /μm
      SimulatedExperimentalSimulatedExperimental
      115Y-branch+SWG0.168002.7
      116Y-branch0.1810020.0
      117Y-branch +Intelligent algorithm0.10202.6
      T-branch1.301002.9
      118MMI0.01131442.9
      119Adiabatic DC0.530.70900100(C band)60.0
      160(O band)
      100(L band)
      120Y-branch+SWG0.120.208001009.6
    • Table 4. Waveguide bendings in thin film lithium niobate platform

      View table

      Table 4. Waveguide bendings in thin film lithium niobate platform

      Ref.StructureModeInsertion loss /dBCrosstalk /dBBandwidth /nmLength /μm
      SimulatedExperimentalSimulatedExperimental
      121Intelligent algorithm10.290.411006
      123Air grooves30.852.50-12.8-12.2100120
      102Euler bend40.040.05-25.0-17.0100160
    • Table 5. Waveguide crossings in thin film lithium niobate platform

      View table

      Table 5. Waveguide crossings in thin film lithium niobate platform

      Ref.ModeInsertion loss /dBCrosstalk /dBBandwidth /nmLength /μm
      12110.48-3610012
      12210.07-508035
    • Table 6. Polarizers in thin film lithium niobate platform

      View table

      Table 6. Polarizers in thin film lithium niobate platform

      Ref.FunctionExtinction ratio /dBInsertion loss /dBBandwidth /nmLength /μm
      126Experimental>20.0<2.0270(TE)300
      90(TM)
      127Simulated>20.0<2.5140(TM)23
      128Simulated>15.0<3.4300(TE)9
      129Simulated>20.0<0.5110(TM)13
      130Experimental>20.0<0.640(TM)55
      131Simulated>29.4<1.1415(TM)75
      132Simulated>25.0<0.5200(TE)7.5
    • Table 7. Polarization beam splitters in thin film lithium niobate platform

      View table

      Table 7. Polarization beam splitters in thin film lithium niobate platform

      Ref.FunctionExtinction ratio /dBInsertion loss /dBBandwidth /nmLength /μm
      133Simulated

      47.7(TE)

      48.0(TM)

      0.6(TE)

      0.9(TM)

      > 200(ER > 17.8 dB,TE)

      > 200(ER > 22.8 dB,TM)

      ~430
      134Simulated

      ~21.0(TE)

      ~45.0(TM)

      <1.0(TE & TM)

      150(ER > 20 dB,TE)

      250(ER > 40 dB,TM)

      > 6000
      135Simulated

      40.9(TE)

      26.1(TM)

      <0.3(TE & TM)

      > 200(ER > 10 dB,TE)

      > 200(ER > 20 dB,TM)

      47
      136Simulated

      ~24.0(TE)

      ~25.0(TM)

      0.3(TE)

      1.0(TM)

      185(ER > 20 dB,TE)

      85(ER > 20 dB,TM)

      160
      137Simulated>35.0(TE & TM)65(ER > 10 dB,TE&TM)~85
      138Simulated

      26.7(TE)

      21.3(TM)

      <0.05(TE & TM)140(ER > 10 dB,TE&TM)16
      139Simulated

      100(ER > 29.4 dB & IL < 0.066 dB,TE)

      ~60(ER > 20 dB & IL < 0.16 dB,TM)

      31
      140Simulated25.3(TE)0.9(TE)40(ER > 22.5 dB & IL < 1.86 dB,TE)157.4
      23.4(TM)1.1(TM)40(ER > 19.5 dB & IL < 1.34 dB,TM)
      Experimental25.1(TE)2.2(TE)
      25.3(TM)2.6(TM)40(ER > 15 dB & IL < 3.86 dB)
      141Experimental

      35(ER > 21 dB & IL < 1.1 dB,TE)

      35(ER > 21 dB & IL < 1.8 dB,TM)

      1450
    • Table 8. Polarization rotators in thin film lithium niobate platform

      View table

      Table 8. Polarization rotators in thin film lithium niobate platform

      Ref.FunctionMode conversion typePER /dBPCE /%Insertion loss /dBLength /μm
      142SimulatedTE→TM38.5799.990.2015.8
      TM→TE68.95~100.000.22
      143SimulatedTM→TE59.581.4413.7
      144SimulatedTM→TE19.9699.00150.0
      145SimulatedTE→TM99.600.3817.7
      TM→TE99.200.40
    • Table 9. Polarization rotating beam splitters in thin film lithium niobate platform

      View table

      Table 9. Polarization rotating beam splitters in thin film lithium niobate platform

      Ref.FunctionExtinction ratio /dBInsertion loss /dBBandwidth /nmLength /μm
      54Experimental>17.8(TE)<0.9(TE)40620
      >10.6(TM)<1.5(TM)
      146Experimental>8.0<2.0130>7000
      147Experimental20.0<0.7>80431
      148Experimental>19.6<1.0>60440
      149Experimental>15.0<0.5>1651240
      150Experimental>22.0(TE)<1.0(TE)160405
      >11.0(TM)<2.0(TM)
      151Experimental>20.0<1.5> 40>1200
      152Experimental>26.6(TE)<1.060440
      >19.6(TM)
      153Experimental>20.0(TE)<1.3(TE)> 126(TE)679
      >10.0(TM)<1.5(TM)> 47(TM)
    Tools

    Get Citation

    Copy Citation Text

    Yonghui Tian, Mingrui Yuan, Shijing Qin, Hao Li, Sixuan Wang, Huifu Xiao. Thin Film Lithium Niobate On-Chip Integration of Multi-Dimensional Multiplexed Photonic Devices (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(11): 1116004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Jan. 15, 2024

    Accepted: Feb. 23, 2024

    Published Online: Jun. 17, 2024

    The Author Email: Yonghui Tian (siphoton@lzu.edu.cn)

    DOI:10.3788/LOP240525

    CSTR:32186.14.LOP240525

    Topics