Acta Photonica Sinica, Volume. 53, Issue 5, 0553106(2024)

Quantum Dots for Wavelength-tunable Entangled Photon Sources(Invited)

Chen CHEN and Feng LIU*
Author Affiliations
  • State Key Laboratory of Extreme Photonics and Instrumentation,College of Information Science and Electronic Engineering,Zhejiang University,Hangzhou 310027,China
  • show less
    References(76)

    [1] KIMBLE H J. The quantum internet[J]. Nature, 453, 1023-1030(2008).

    [2] WEHNER S, ELKOUSS D, HANSON R. Quantum internet: a vision for the road ahead[J]. Science, 362, eaam9288(2018).

    [3] GISIN N, THEW R. Quantum communication[J]. Nature Photonics, 1, 165-171(2007).

    [4] O'BRIEN J L, FURUSAWA A, VUČKOVIĆ J. Photonic quantum technologies[J]. Nature Photonics, 3, 1-9(2009).

    [5] PIRANDOLA S, BARDHAN B R, GEHRING T et al. Advances in photonic quantum sensing[J]. Nature Photonics, 12, 724-733(2018).

    [6] BRIEGEL H J, DÜR W, CIRAC J I et al. Quantum repeaters: the role of imperfect local operations in quantum communication[J]. Physical Review Letters, 81, 5932-5935(1998).

    [7] DUAN L M, LUKIN M D, CIRAC J I et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 414, 413-418(2001).

    [8] MUNRO W J, STEPHENS A M, DEVITT S J et al. Quantum communication without the necessity of quantum memories[J]. Nature Photonics, 6, 777-781(2012).

    [9] MÜLLER M, BOUNOUAR S, JÖNS K D et al. On-demand generation of indistinguishable polarization-entangled photon pairs[J]. Nature Photonics, 8, 224-228(2014).

    [10] LU C Y, PAN J W. Push-button photon entanglement[J]. Nature Photonics, 8, 174-176(2014).

    [11] DOUSSE A, SUFFCZYŃSKI J, BEVERATOS A et al. Ultrabright source of entangled photon pairs[J]. Nature, 466, 217-220(2010).

    [12] WANG H, HU H, CHUNG T H et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability[J]. Physical Review Letters, 122, 113602(2019).

    [13] HUBER D, REINDL M, COVRE DA SILVA S F et al. Strain-tunable gaas quantum dot: a nearly dephasing-free source of entangled photon pairs on demand[J]. Physical Review Letters, 121, 033902(2018).

    [14] HEPP S, JETTER M, PORTALUPI S L et al. Semiconductor quantum dots for integrated quantum photonics[J]. Advanced Quantum Technologies, 2, 1900020(2019).

    [15] ELSHAARI A W, ZADEH I E, FOGNINI A et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits[J]. Nature Communications, 8, 379(2017).

    [16] PERRET N, MORRIS D, FRANCHOMME-FOSSÉ L et al. Origin of the inhomogenous broadening and alloy intermixing in InAs/GaAs self-assembled quantum dots[J]. Physical Review B, 62, 5092-5099(2000).

    [17] RASTELLI A, STOFFEL M, MALACHIAS A et al. Three-dimensional composition profiles of single quantum dots determined by scanning-probe-microscopy-based nanotomography[J]. Nano Letters, 8, 1404-1409(2008).

    [18] BABIN H G, BART N, SCHMIDT M et al. Full wafer property control of local droplet etched GaAs quantum dots[J]. Journal of Crystal Growth, 591, 126713(2022).

    [19] HONG C K, OU Z Y, MANDEL L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 59, 2044-2046(1987).

    [20] ZOPF M, KEIL R, CHEN Y et al. Entanglement swapping with semiconductor-generated photons violates Bell's inequality[J]. Physical Review Letters, 123, 160502(2019).

    [21] SCHLIWA A, WINKELNKEMPER M, BIMBERG D. Impact of size, shape, and composition on piezoelectric effects and electronic properties of In (Ga) As/Ga As quantum dots[J]. Physical Review B, 76, 205324(2007).

    [22] ANO T, ABBARCHI M, KURODA T et al. Self-assembly of symmetric gaas quantum dots on (111)a substrates: suppression of fine-structure splitting[J]. Applied Physics Express, 3, 065203(2010).

    [23] PLUMHOF J, KŘÁPEK V, WANG L et al. Experimental investigation and modeling of the fine structure splitting of neutral excitons in strain-free GaAs/Alx Ga1- x As quantum dots[J]. Physical Review B, 81, 121309(2010).

    [24] LUO J W, ZUNGER A. Geometry of epitaxial GaAs/(Al,Ga)As quantum dots as seen by excitonic spectroscopy[J]. Physical Review B, 84, 235317(2011).

    [25] BAYER M, ORTNER G, STERN O et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots[J]. Physical Review B, 65, 195315(2002).

    [26] HUDSON A J, STEVENSON R M, BENNETT A J et al. Coherence of an entangled exciton-photon state[J]. Physical Review Letters, 99, 266802(2007).

    [27] STEVENSON R M, YOUNG R J, SEE P et al. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots[J]. Physical Review B, 73, 033306(2006).

    [28] STEVENSON R M, YOUNG R J, ATKINSON P et al. A semiconductor source of triggered entangled photon pairs[J]. Nature, 439, 178-182(2006).

    [29] MAR J D, XU X L, SANDHU J S et al. Electrical control of fine-structure splitting in self-assembled quantum dots for entangled photon pair creation[J]. Applied Physics Letters, 97, 221108(2010).

    [30] VOGEL M M, ULRICH S M, HAFENBRAK R et al. Influence of lateral electric fields on multi-excitonic transitions and fine structure of single quantum dots[J]. Applied Physics Letters, 91, 2005-2008(2007).

    [31] KOWALIK K, KREBS O, LEMAÎTRE A et al. Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots[J]. Applied Physics Letters, 86, 041907(2005).

    [32] BENNETT A J, POOLEY M A, STEVENSON R M et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot[J]. Nature Physics, 6, 947-950(2010).

    [33] GHALI M, OHTANI K, OHNO Y et al. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field[J]. Nature Communications, 3, 661(2012).

    [34] MULLER A, FANG W, LAWALL J et al. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect[J]. Physical Review Letters, 103, 217402(2009).

    [35] JUNDT G, ROBLEDO L, HÖGELE A et al. Observation of dressed excitonic states in a single quantum dot[J]. Physical Review Letters, 100, 177401(2008).

    [36] BRASH A J, MARTINS L M P P, LIU F et al. High-fidelity initialization of long-lived quantum dot hole spin qubits by reduced fine-structure splitting[J]. Physical Review B, 92, 121301(2015).

    [37] SEIDL S, KRONER M, HÖGELE A et al. Effect of uniaxial stress on excitons in a self-assembled quantum dot[J]. Applied Physics Letters, 88, 0-3(2006).

    [38] TROTTA R, MARTÍN-SÁNCHEZ J, DARUKA I et al. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays[J]. Physical Review Letters, 114, 150502(2015).

    [39] GERARDOT B D, BRUNNER D, DALGARNO P A et al. Optical pumping of a single hole spin in a quantum dot[J]. Nature, 451, 441-444(2008).

    [40] YAN J Y, CHEN C, ZHANG X D et al. Coherent control of a high-orbital hole in a semiconductor quantum dot[J]. Nature Nanotechnology, 18, 1139-1146(2023).

    [41] BENSON O, SANTORI C, PELTON M et al. Regulated and entangled photons from a single quantum dot[J]. Physical Review Letters, 84, 2513-2516(2000).

    [42] BRUS L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state[J]. The Journal of Chemical Physics, 80, 4403-4409(1984).

    [43] BRUS L E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites[J]. The Journal of Chemical Physics, 79, 5566-5571(1983).

    [44] GARCÍA DE ARQUER F P, TALAPIN D V, KLIMOV V I et al. Semiconductor quantum dots: technological progress and future challenges[J]. Science, 373, eaaz8541(2021).

    [45] LETTNER T, GYGER S, ZEUNER K D et al. Strain-controlled quantum dot fine structure for entangled photon generation at 1550 nm[J]. Nano Letters, 21, 10501-10506(2021).

    [46] SCHIMPF C, REINDL M, BASSO BASSET F et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks[J]. Applied Physics Letters, 118, 100502(2021).

    [47] SALTER C L, STEVENSON R M, FARRER I et al. An entangled-light-emitting diode[J]. Nature, 465, 594-597(2010).

    [48] HUWER J, STEVENSON R M, SKIBA-SZYMANSKA J et al. Quantum-dot-based telecommunication-wavelength quantum relay[J]. Physical Review Applied, 8, 024007(2017).

    [49] ELLIS D J P, STEVENSON R M, YOUNG R J et al. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing[J]. Applied Physics Letters, 90, 011907(2007).

    [50] TROTTA R, ZALLO E, ORTIX C et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry[J]. Physical Review Letters, 109, 147401(2012).

    [51] ZHANG J, ZALLO E, HÖFER B et al. Electric-field-induced energy tuning of on-demand entangled-photon emission from self-assembled quantum dots[J]. Nano Letters, 17, 501-507(2017).

    [52] POOLEY M A, BENNETT A J, STEVENSON R M et al. Energy-tunable quantum dot with minimal fine structure created by using simultaneous electric and magnetic fields[J]. Physical Review Applied, 1, 024002(2014).

    [53] CHEN Y, ZHANG J, ZOPF M et al. Wavelength-tunable entangled photons from silicon-integrated Ⅲ-Ⅴ quantum dots[J]. Nature Communications, 7, 10387(2016).

    [54] TROTTA R, MARTÍN-SÁNCHEZ J, WILDMANN J S et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours[J]. Nature Communications, 7, 10375(2016).

    [55] OU W, WANG X, WEI W et al. Strain tuning self-assembled quantum dots for energy-tunable entangled-photon sources using a photolithographically fabricated microelectromechanical system[J]. ACS Photonics, 9, 3421-3428(2022).

    [56] CHEN C, YAN J Y, BABIN H G et al. Wavelength-tunable high-fidelity entangled photon sources enabled by dual Stark effects[J](2023).

    [57] PURCELL E M. Spontaneous emission probabilities at radio frequencies[J]. Physical Review, 69, 681(1946).

    [58] GERARD J M, GAYRAL B. Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities[J]. Journal of Lightwave Technology, 17, 2089(1999).

    [59] SOLOMON G S, PELTON M, YAMAMOTO Y. Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity[J]. Physical Review Letters, 86, 3903-3906(2001).

    [60] BARNES W, BJÖRK G, GÉRARD J et al. Solid-state single photon sources: light collection strategies[J]. The European Physical Journal D-Atomic, Molecular and Optical Physics, 18, 197-210(2002).

    [61] RAMSAY E. Solid immersion lens applications for nanophotonic devices[J]. Journal of Nanophotonics, 2, 021854(2008).

    [62] CHEN Y, ZOPF M, KEIL R et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna[J]. Nature Communications, 9, 2994(2018).

    [63] GAZZANO O, SOLOMON G S. Toward optical quantum information processing with quantum dots coupled to microstructures [Invited][J]. Journal of the Optical Society of America B, 33, C160(2016).

    [64] DING X, GUO Y P, XU M C et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing[J](2023).

    [65] SIMON C, POIZAT J P. Creating single time-bin-entangled photon pairs[J]. Physical Review Letters, 94, 030502(2005).

    [66] HUBER T, PREDOJEVIĆ A, ZOUBI H et al. Measurement and modification of biexciton-exciton time correlations[J]. Optics Express, 21, 9890(2013).

    [67] SCHÖLL E, SCHWEICKERT L, HANSCHKE L et al. Crux of using the cascaded emission of a three-level quantum ladder system to generate indistinguishable photons[J]. Physical Review Letters, 125, 233605(2020).

    [68] LIU J, SU R, WEI Y et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability[J]. Nature Nanotechnology, 14, 586-593(2019).

    [69] LIU J, SU R, WEI Y et al. A solid-state entangled photon pair source with high brightness and indistinguishability[J](2019).

    [70] SEYFFERLE S, HERZOG T, SITTIG R et al. Wavelength-tunable open double-microcavity to enhance two closely spaced optical transitions[J](2022).

    [71] NAJER D, SÖLLNER I, SEKATSKI P et al. A gated quantum dot strongly coupled to an optical microcavity[J]. Nature, 575, 622-627(2019).

    [72] DING F, SINGH R, PLUMHOF J D et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress[J]. Physical Review Letters, 104, 067405(2010).

    [73] TROTTA R, ZALLO E, MAGERL E et al. Independent control of exciton and biexciton energies in single quantum dots via electroelastic fields[J]. Physical Review B, 88, 155312(2013).

    [74] REIMER M E, VAN KOUWEN M P, HIDMA A W et al. Electric field induced removal of the biexciton binding energy in a single quantum dot[J]. Nano Letters, 11, 645-650(2011).

    [75] BASSO BASSET F, ROTA M B, SCHIMPF C et al. Entanglement swapping with photons generated on demand by a quantum dot[J]. Physical Review Letters, 123, 160501(2019).

    [76] GHOSH S, KAR G, DE SEN A et al. Mixedness in the Bell violation versus entanglement of formation[J]. Physical Review A, 64, 044301(2001).

    Tools

    Get Citation

    Copy Citation Text

    Chen CHEN, Feng LIU. Quantum Dots for Wavelength-tunable Entangled Photon Sources(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553106

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Microcavity Photonics

    Received: Nov. 27, 2023

    Accepted: Jan. 8, 2024

    Published Online: Jun. 20, 2024

    The Author Email: Feng LIU (feng_liu@zju.edu.cn)

    DOI:10.3788/gzxb20245305.0553106

    Topics