Acta Laser Biology Sinica, Volume. 31, Issue 6, 526(2022)

Construction of Zebrafish gpr112a Gene Knockout Line

SUN Luning1,2, YANG Boyu3, LIU Ling1,2, ZHU Junwei1,2, YANG Tianle3, PENG Zheng3, ZHENG Lan3, and XIE Huaping1,2,4、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(28)

    [1] [1] BOCKAERT J, PIN J P. Molecular tinkering of G protein-coupled receptors: an evolutionary success[J]. EMBO Journal, 1999, 18(7): 1723-1729.

    [2] [2] BJARNADóTTIR T K, GLORIAM D E, HELLSTRAND S H, et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse[J]. Genomics, 2006, 88(3): 263-273.

    [3] [3] PIERCE K L, PREMONT R T, LEFKOWITZ R J. Seven-transmembrane receptors[J]. Nature Reviews Molecular Cell Biology, 2002, 3(9): 639-650.

    [4] [4] FREDRIKSSON R, LAGERSTR?M M C, H?GLUND P J, et al. Novel human G protein-coupled receptors with long N-terminals containing GPS domains and Ser/Thr-rich regions[J]. FEBS Letters, 2002, 531(3): 407-414.

    [5] [5] HAMANN J, AUST G, ARA? D, et al. International union of basic and clinical pharmacology. XCIV. adhesion G protein-coupled receptors[J]. Pharmacological Reviews, 2015, 67(2): 338-367.

    [6] [6] FREDRIKSSON R, LAGERSTR?M M C, LUNDIN L G, et al. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints[J]. Molecular Pharmacology, 2003, 63(6): 1256-1272.

    [7] [7] LEJA J, ESSAGHIR A, ESSAND M, et al. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas[J]. Modern Pathology, 2009, 22(2): 261-272.

    [8] [8] TAKAHASHI N, DAWID I B. Characterization of zebrafish Rad52 and replication protein A for oligonucleotide-mediated mutagenesis[J]. Nucleic Acids Research, 2005, 33(13): e120.

    [9] [9] VARSHNEY G K, ZHANG S, PEI W, et al. CRISPRz: a database of zebrafish validated sgRNAs[J]. Nucleic Acids Research, 2016, 44(D1): D822-826.

    [10] [10] HARTY B L, KRISHNAN A, SANCHEZ N E, et al. Defining the gene repertoire and spatiotemporal expression profiles of adhesion G protein-coupled receptors in zebrafish[J]. BMC Genomics, 2015, 16(1): 62.

    [11] [11] SUBTELNY A O, EICHHORN S W, CHEN G R, et al. Poly(A)-tail profiling reveals an embryonic switch in translational control[J]. Nature, 2014, 508(7494): 66-71.

    [13] [13] ZHAN T, RINDTORFF N, BETGE J, et al. CRISPR/Cas9 for cancer research and therapy[J]. Seminars in Cancer Biology, 2019, 55: 106-119.

    [14] [14] TYAGI S, KUMAR R, DAS A, et al. CRISPR-Cas9 system: a genome-editing tool with endless possibilities[J]. Journal of Biotechnology, 2020, 319: 36-53.

    [15] [15] HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278.

    [16] [16] SANDER J D, JOUNG J K. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nature Biotechnology, 2014, 32(4): 347-355.

    [17] [17] HOSHIJIMA K, JURYNEC M J, KLATT SHAW D, et al. Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish[J]. Developmental Cell, 2019, 51(5): 645-657.e644.

    [18] [18] LEE H J, KIM E, KIM J S. Targeted chromosomal deletions in human cells using zinc finger nucleases[J]. Genome Research, 2010, 20(1): 81-89.

    [19] [19] XIAO A, WANG Z, HU Y, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish[J]. Nucleic Acids Research, 2013, 41(14): e141.

    [20] [20] GU Z, STEINMETZ L M, GU X, et al. Role of duplicate genes in genetic robustness against null mutations[J]. Nature, 2003, 421(6918): 63-66.

    [21] [21] STAMBOULIAN M, GUERRERO R F, HAHN M W, et al. The ortholog conjecture revisited: the value of orthologs and paralogs in function prediction[J]. Bioinformatics, 2020, 36(Suppl_1): i219-i226.

    [22] [22] KOONIN E V. Orthologs, paralogs, and evolutionary genomics[J]. Annual Review of Genetics, 2005, 39: 309-338.

    [23] [23] DISS G, ASCENCIO D, DELUNA A, et al. Molecular mechanisms of paralogous compensation and the robustness of cellular networks[J]. Journal of Experimental Zoology Part B Molecular and Developmental Evolution, 2014, 322(7): 488-499.

    [24] [24] LUZURIAGA-NEIRA A, SUBRAMANIAN K, ALVAREZ-PONCE D. Functional compensation of mouse duplicates by their paralogs expressed in the same tissues[J]. Genome Biology and Evolution, 2022, 14(8): evac126.

    [25] [25] MA Z, ZHU P, SHI H, et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components[J]. Nature, 2019, 568(7751): 259-263.

    [26] [26] ROSSI A, KONTARAKIS Z, GERRI C, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns[J]. Nature, 2015, 524(7564): 230-233.

    [27] [27] KOK F O, SHIN M, NI C W, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish[J]. Developmental Cell, 2015, 32(1): 97-108.

    [28] [28] EL-BROLOSY M A, STAINIER D Y R. Genetic compensation: a phenomenon in search of mechanisms[J]. PLoS Genetics, 2017, 13(7): e1006780.

    [29] [29] EL-BROLOSY M A, KONTARAKIS Z, ROSSI A, et al. Genetic compensation triggered by mutant mRNA degradation[J]. Nature, 2019, 568(7751): 193-197.

    Tools

    Get Citation

    Copy Citation Text

    SUN Luning, YANG Boyu, LIU Ling, ZHU Junwei, YANG Tianle, PENG Zheng, ZHENG Lan, XIE Huaping. Construction of Zebrafish gpr112a Gene Knockout Line[J]. Acta Laser Biology Sinica, 2022, 31(6): 526

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 27, 2022

    Accepted: --

    Published Online: Mar. 6, 2023

    The Author Email: Huaping XIE (hpxie@hunnu.edu.cn)

    DOI:10.3969/j.issn.1007-7146.2022.06.007

    Topics