Acta Laser Biology Sinica, Volume. 31, Issue 6, 526(2022)
Construction of Zebrafish gpr112a Gene Knockout Line
[1] [1] BOCKAERT J, PIN J P. Molecular tinkering of G protein-coupled receptors: an evolutionary success[J]. EMBO Journal, 1999, 18(7): 1723-1729.
[2] [2] BJARNADóTTIR T K, GLORIAM D E, HELLSTRAND S H, et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse[J]. Genomics, 2006, 88(3): 263-273.
[3] [3] PIERCE K L, PREMONT R T, LEFKOWITZ R J. Seven-transmembrane receptors[J]. Nature Reviews Molecular Cell Biology, 2002, 3(9): 639-650.
[4] [4] FREDRIKSSON R, LAGERSTR?M M C, H?GLUND P J, et al. Novel human G protein-coupled receptors with long N-terminals containing GPS domains and Ser/Thr-rich regions[J]. FEBS Letters, 2002, 531(3): 407-414.
[5] [5] HAMANN J, AUST G, ARA? D, et al. International union of basic and clinical pharmacology. XCIV. adhesion G protein-coupled receptors[J]. Pharmacological Reviews, 2015, 67(2): 338-367.
[6] [6] FREDRIKSSON R, LAGERSTR?M M C, LUNDIN L G, et al. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints[J]. Molecular Pharmacology, 2003, 63(6): 1256-1272.
[7] [7] LEJA J, ESSAGHIR A, ESSAND M, et al. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas[J]. Modern Pathology, 2009, 22(2): 261-272.
[8] [8] TAKAHASHI N, DAWID I B. Characterization of zebrafish Rad52 and replication protein A for oligonucleotide-mediated mutagenesis[J]. Nucleic Acids Research, 2005, 33(13): e120.
[9] [9] VARSHNEY G K, ZHANG S, PEI W, et al. CRISPRz: a database of zebrafish validated sgRNAs[J]. Nucleic Acids Research, 2016, 44(D1): D822-826.
[10] [10] HARTY B L, KRISHNAN A, SANCHEZ N E, et al. Defining the gene repertoire and spatiotemporal expression profiles of adhesion G protein-coupled receptors in zebrafish[J]. BMC Genomics, 2015, 16(1): 62.
[11] [11] SUBTELNY A O, EICHHORN S W, CHEN G R, et al. Poly(A)-tail profiling reveals an embryonic switch in translational control[J]. Nature, 2014, 508(7494): 66-71.
[13] [13] ZHAN T, RINDTORFF N, BETGE J, et al. CRISPR/Cas9 for cancer research and therapy[J]. Seminars in Cancer Biology, 2019, 55: 106-119.
[14] [14] TYAGI S, KUMAR R, DAS A, et al. CRISPR-Cas9 system: a genome-editing tool with endless possibilities[J]. Journal of Biotechnology, 2020, 319: 36-53.
[15] [15] HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278.
[16] [16] SANDER J D, JOUNG J K. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nature Biotechnology, 2014, 32(4): 347-355.
[17] [17] HOSHIJIMA K, JURYNEC M J, KLATT SHAW D, et al. Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish[J]. Developmental Cell, 2019, 51(5): 645-657.e644.
[18] [18] LEE H J, KIM E, KIM J S. Targeted chromosomal deletions in human cells using zinc finger nucleases[J]. Genome Research, 2010, 20(1): 81-89.
[19] [19] XIAO A, WANG Z, HU Y, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish[J]. Nucleic Acids Research, 2013, 41(14): e141.
[20] [20] GU Z, STEINMETZ L M, GU X, et al. Role of duplicate genes in genetic robustness against null mutations[J]. Nature, 2003, 421(6918): 63-66.
[21] [21] STAMBOULIAN M, GUERRERO R F, HAHN M W, et al. The ortholog conjecture revisited: the value of orthologs and paralogs in function prediction[J]. Bioinformatics, 2020, 36(Suppl_1): i219-i226.
[22] [22] KOONIN E V. Orthologs, paralogs, and evolutionary genomics[J]. Annual Review of Genetics, 2005, 39: 309-338.
[23] [23] DISS G, ASCENCIO D, DELUNA A, et al. Molecular mechanisms of paralogous compensation and the robustness of cellular networks[J]. Journal of Experimental Zoology Part B Molecular and Developmental Evolution, 2014, 322(7): 488-499.
[24] [24] LUZURIAGA-NEIRA A, SUBRAMANIAN K, ALVAREZ-PONCE D. Functional compensation of mouse duplicates by their paralogs expressed in the same tissues[J]. Genome Biology and Evolution, 2022, 14(8): evac126.
[25] [25] MA Z, ZHU P, SHI H, et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components[J]. Nature, 2019, 568(7751): 259-263.
[26] [26] ROSSI A, KONTARAKIS Z, GERRI C, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns[J]. Nature, 2015, 524(7564): 230-233.
[27] [27] KOK F O, SHIN M, NI C W, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish[J]. Developmental Cell, 2015, 32(1): 97-108.
[28] [28] EL-BROLOSY M A, STAINIER D Y R. Genetic compensation: a phenomenon in search of mechanisms[J]. PLoS Genetics, 2017, 13(7): e1006780.
[29] [29] EL-BROLOSY M A, KONTARAKIS Z, ROSSI A, et al. Genetic compensation triggered by mutant mRNA degradation[J]. Nature, 2019, 568(7751): 193-197.
Get Citation
Copy Citation Text
SUN Luning, YANG Boyu, LIU Ling, ZHU Junwei, YANG Tianle, PENG Zheng, ZHENG Lan, XIE Huaping. Construction of Zebrafish gpr112a Gene Knockout Line[J]. Acta Laser Biology Sinica, 2022, 31(6): 526
Received: Sep. 27, 2022
Accepted: --
Published Online: Mar. 6, 2023
The Author Email: Huaping XIE (hpxie@hunnu.edu.cn)