Advanced Photonics, Volume. 6, Issue 6, 066001(2024)

First demonstration of lithium niobate photonic chip for dense wavelength-division multiplexing transmitters

Hongxuan Liu1、†, Bingcheng Pan1, Huan Li1, Zejie Yu1,2,3, Liu Liu1,2,3,4, Yaocheng Shi1,2,3,4, and Daoxin Dai1,2,3,4、*
Author Affiliations
  • 1Zhejiang University, State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Hangzhou, China
  • 2Jiaxing Key Laboratory of Photonic Sensing and Intelligent Imaging, Jiaxing, China
  • 3Jiaxing Research Institute Zhejiang University, Intelligent Optics and Photonics Research Center, Jiaxing, China
  • 4Zhejiang University, Ningbo Research Institute, Ningbo, China
  • show less
    References(57)

    [5] H. Ishio, J. Minowa, K. Nosu. Review and status of wavelength-division-multiplexing technology and its application. J. Light. Technol., 2, 448-463(1984).

    [7] Y. Suzaki et al. Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput. IEEE J. Sel. Top. Quantum Electron., 11, 43-49(2005).

    [11] C. Li et al. Hybrid WDM-MDM transmitter with an integrated Si modulator array and a micro-resonator comb source. Opt. Express, 29, 39847-39858(2021).

    [12] Y. Yuan et al. A 5 × 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions. Nat. Commun., 15, 918(2024).

    [13] C. Sun et al. A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J. Solid-State Circuits, 51, 893-907(2016).

    [14] J. Sharma et al. Silicon photonic microring-based 4 × 112 Gb/s WDM transmitter with photocurrent-based thermal control in 28-nm CMOS. IEEE J. Solid-State Circuits, 57, 1187-1198(2022).

    [16] Y. Wang et al. Silicon photonics chip I/O for ultra high-bandwidth and energy-efficient die-to-die connectivity, 1-8(2024).

    [20] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [31] Y. Xue et al. Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica, 9, 1131-1137(2022).

    [34] Q. Fang et al. WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability. Opt. Express, 18, 5106-5113(2010).

    [35] S. Cheung et al. Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router. IEEE J. Sel. Top. Quantum Electron., 20, 310-316(2014).

    [41] Z. Wang et al. On-chip arrayed waveguide grating fabricated on thin film lithium niobate(2023).

    [57] E. Obrzud et al. Stability of lithium niobate integrated photonics in nonlinear and metrology applications, JW1A.167(2021).

    Tools

    Get Citation

    Copy Citation Text

    Hongxuan Liu, Bingcheng Pan, Huan Li, Zejie Yu, Liu Liu, Yaocheng Shi, Daoxin Dai, "First demonstration of lithium niobate photonic chip for dense wavelength-division multiplexing transmitters," Adv. Photon. 6, 066001 (2024)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 4, 2024

    Accepted: Sep. 25, 2024

    Posted: Sep. 26, 2024

    Published Online: Oct. 22, 2024

    The Author Email: Dai Daoxin (dxdai@zju.edu.cn)

    DOI:10.1117/1.AP.6.6.066001

    CSTR:32187.14.1.AP.6.6.066001

    Topics