Laser Technology, Volume. 49, Issue 1, 106(2025)

Research on improved complex-YOLO LiDAR pedestrian detection algorithm

XU Li, LING Ming*, and WANG Ruoming
Author Affiliations
  • School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • show less
    References(24)

    [1] [1] GHASEMIEH A, KASHEF R. 3-D object detection for autonomous driving: Methods, models, sensors, data, and challenges[J]. Transportation Engineering, 2022, 8: 100115.

    [2] [2] BELLO S A, YU S, WANG C, et al. Deep learning on 3D point clouds[J]. Remote Sensing, 2020, 12(11): 1729.

    [3] [3] ZAMANAKOS G, TSOCHATZIDIS L, AMANATIADIS A, et al. A comprehensive survey of LiDAR-based 3D object detection methods with deep learning for autonomous driving[J]. Computers & Graphics, 2021, 99: 153-181.

    [5] [5] QI C R, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2017: 652-660.

    [6] [6] YIN T, ZHOU X, KRAHENBUHL P. Center-based 3D object detection and tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2021: 11784-11793.

    [7] [7] YANG Z, SUN Y, LIU S, et al. 3D SSD: Point-based 3D single stage object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2020: 11040-11048.

    [8] [8] ZHOU Y, TUZEL O. Voxelnet: End-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2018: 4490-4499.

    [9] [9] DENG J, SHI S, LI P, et al. Voxel R-CNN: Towards high performance voxel-based 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York, USA: IEEE Press, 2021: 1201-1209.

    [10] [10] LANG L H, SOURABH V, HOLGER C, et al. Pointpillars: Fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2019: 12697-12705.

    [11] [11] CHEN X, MA H, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2017: 1907-1915.

    [12] [12] BARAAERA A, GUINDEL C, BELTRAN J, et al. Birdnet+: End-to-end 3D object detection in lidar bird’s eye view[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). New York, USA: IEEE Press, 2020: 1-6.

    [13] [13] MA Y, WANG T, BAI X, et al. Vision-centric BEV perception: A survey[EB/OL]. (2022-04-22) [2024-01-03]. https://arxiv.org/abs/2208.02797.

    [14] [14] SIMONY M, MILZY S, AMENDEY K, et al. Complex-yolo: Aneuler-region-proposal for real-time 3D object detection on point clouds[C]//Proceedings of the European Conference on Computer Vision (ECCV) Workshops. New York, USA: IEEE Press, 2018: 335-345.

    [15] [15] TANG Y, HAN K, GUO J, et al. GhostNetv2: Enhance cheap operation with long-range attentat[EB/OJ]. (2022-11-23) [2024-01-03]. https://arxiv.org/abs/2211.12905.

    [16] [16] LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2017: 2117-2125.

    [17] [17] ZOU Z, SHI Z, GUO Y, et al. Object detection in 20 Years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.

    [18] [18] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York, USA: IEEE Press, 2020: 390-391.

    [19] [19] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.

    [20] [20] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[EB/OJ]. (2020-04-23) [2024-01-03]. https://arxiv.org/abs/2004.10934.

    [22] [22] YU J, JIANG Y, WANG Z, et al. Unitbox: An advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York, USA: IEEE Press, 2016: 516-520.

    [23] [23] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York, USA: IEEE Press, 2020: 12993-13000.

    [24] [24] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neuro Computing, 2022, 506: 146-157.

    [25] [25] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving the KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2012: 3354-3361.

    [26] [26] KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York, USA: IEEE Press, 2018: 1-8.

    Tools

    Get Citation

    Copy Citation Text

    XU Li, LING Ming, WANG Ruoming. Research on improved complex-YOLO LiDAR pedestrian detection algorithm[J]. Laser Technology, 2025, 49(1): 106

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 22, 2023

    Accepted: Feb. 18, 2025

    Published Online: Feb. 18, 2025

    The Author Email: LING Ming (Lingming200093@hotmail.com)

    DOI:10.7510/jgjs.issn.1001-3806.2025.01.017

    Topics